
NAME:

Ozymandias by Percy Bysshe Shelley		My Last Duchess by Robert Browning	
Content, Meaning and Purpose -The narrator meets a traveller who tells him about a decayed statue that he saw in a desertThe statue was of a long forgotten ancient King: the arrogant Ozymandias, 'king of kings.' -The poem is ironic and one big metaphor: Human power is only temporary – the statue now lays crumbled in the sand, and even the most powerful human creations cannot resist the power of nature.	Language -'sneer of cold command': the king was arrogant, this has been recognised by the sculptor, the traveller and then the narrator. -'Look on my works, ye Mighty, and despair.': 'Look' = imperative, stressed syllable highlights commanding tone; ironic – he is telling other 'mighty' kings to admire the size of his statue and 'despair', however they should really despair because power is only temporary. 'The lone and level sands stretch far away.': the desert is vast, lonely, and lasts far longer than a statue	Content, Meaning and Purpose -The Duke is showing a visitor around his large art collection and proudly points out a portrait of his last wife, who is now dead. He reveals that he was annoyed by her over-friendly and flirtatious behaviourHe can finally control her by objectifying her and showing her portrait to visitors when he chooses He is now alone as a result of his need for control. -The visitor has come to arrange the Duke's next marriage, and the Duke's story is a subtle warning about how he expects his next wife to behave.	Language -'Looking as if she was alive': sets a sinister tone. -'Will't please you sit and look at her?' rhetorical question to his visitor shows obsession with power. -'she liked whate'er / She looked on, and her looks went everywhere.': hints that his wife was a flirt. -'as if she ranked / My gift of a nine-hundred-yearsold name / With anybody's gift': she was beneath him in status, and yet dared to rebel against his authority. -'I gave commands; Then all smiles stopped together': euphemism for his wife's murder. -'Notice Neptune, though / Taming a sea-horse': he points out another painting, also about control.
	Cluster T Power of	hree- The Identity.	
Tissue by Im l iaz Dharker		Checking Out Me History by John Agar	đ
Content, Meaning and Purpose -Two	Language	Content, Meaning and Purpose -Represents	Language

different meanings of 'Tissue' (homonyms) are explored: firstly, the various pieces of paper that control our lives (holy books, maps, grocery receipts); secondly, the tissue of a human body. -The poet explores the paradox that although paper is fragile, temporary and ultimately not important, we allow it to control our lives. -Also, although human life is much more precious, it is also fragile and temporary.

-Semantic field of light: ('Paper that lets light shine through', 'The sun shines through their borderlines', 'let the daylight break through capitals and monoliths') emphasises that light is central to life, a positive and powerful force that can break through 'tissue' and even monoliths (stone statues). -'pages smoothed and stroked and turned': gentle verbs convey how important documents such as the Koran are treated with respect. -'Fine slips [...] might fly our lives like paper kites': this

simile suggests that we allow ourselves to be controlled by paper.

the voice of a black man who is frustrated by the Eurocentric history curriculum in the UK which pays little attention to the black history. -Black history is quoted to emphasise

its separateness and to stress its importance.

-Imagery of fire and light used in all three stanzas regarding black historic figures: "Toussaint de beacon", "Fire-woman", "yellow sunrise". -Uses non-standard phonetic spelling ("Dem tell me wha dem want", to represent his own powerful accent and mixes Caribbean Creole dialect with standard English.

-"I carving out me identity": metaphor for the painful struggle to be heard, and to find his identity.

ENGLISH LITERATURE

Blood Brothers- Literature Paper Two.

Vocabulary	Definition
Poverty	Lacking in money linked to deprivation in social conditions, housing and education
Wealth	The abundance of money or possessions
Liverpudlian	A person who comes from Liverpool (often with a distinct accent)
Deceit	Concealing or misrepresenting the truth
Death	Ending of life
Innocence	The state of being pure and lacking in corrupt behaviour
Superstition	Irrational belief in widely held supernatural instances
Class System	The concept that there is more than one social class of people: working class, middle class and uppe class and the rules which govern the lives of people in different classes lead to societal unfairness
Hierarchy	Ranking of members of society due to status or authority
Disillusioned	Disappointment in someone or something that appears to be less good than initially thought
Condescension	A patronising, condescending attitude towards others
Snobbery	The character or quality of being a snob
Underprivileged	Not having access to the same standard of living as other people in society
Omniscient Narrator	All knowing narrative voice
Dialogue	Speech
Accent	A distinctive way of pronouncing words
Dramatic Irony	From Greek tragedy: the audience is aware of the importance of events but the characters are not
Foreshadowing	Predicting or warning of a future event in the text
Pathetic Fallacy	Linking of nature and weather to human emotions/moods
Metaphor	Where one thing becomes another in a comparison
Musical	The form of the play: music plays an important part in revealing the action/events
Symbolism	Using symbols in literature to represent ideas or qualities
Motif	A dominant or recurring idea in the play

SKIUS

- Analysis Points:
- Link to the question

Link to the terminology (Lang/Structure – evaluating choice)
Short Quote(s) -or Moment

Explain meaning and effect – both obvious and hidden (explicit and implicit) Zoom in on words/explore connotations and effect

Suggest what other readers might think/feel (offering an alternative opinion) Link to the writer's intentions (step out from the close analysis to give an overview of meaning)

Explore a linking quote/supporting idea

key themes

Wealth, Poverty, Class, Superstition, Childhood, Death

EXAM REQUIREMENTS

ESSAY QUESTION- 45 mins (including planning time)

 Typical Questions

 Write about the theme of ______ and how it is presented at different points in the play/text

 In your response you should:

 □ refer to the extract and the play as a whole;

 □ show your understanding of theme and events in the play. [35+5]

 5 of this question's marks are allocated for accuracy in spelling, punctuation and the use of

 vocabulary and sentence structures.

 This question assesses AO1, AO2 and AO4 (5 additional marks).

<u>Event Guide:</u> Act 1

- The narrator introduces the plot in a Greek Chorus (we realise the play is a tragedy)
- Meet two very different women, Mr J v poor agrees to give away one of her twins to Mrs L who is rich.
- Meet the twins ages 7: they are very different in many ways (nurture) but do have quite similar natures. They're treated differently by the police/school.
- Mrs L is paranoid her son will discover his adoption so moves the family to the country to get away from Mickey and Mrs J. Years later, the council rehouses the Johnstone family in the country.

ACT 2

- The boys meet again aged 14 and their friendship continues. The boys, again, display similar natures. They have very different qualities if education. Mickey is in love with Linda.
- Mrs L becomes increasingly mad at the thought of Edward finding out and tries to kills Mrs J.
- Aged 18, Edward goes to university and Mickey to a full-time job which he hates. The gap is widening between them.
- Linda is pregnant so she & Mickey marry. Mickey loses his job, helps Sammy rob a garage & is sent to prison. Nothing is the same for him and Linda again.
- Mickey is released from prison but is addicted to anti-depressants. Desperate, Linda asks Edward for help. He gets them a house & Mickey a job, but starts a brief affair with Linda.

Mrs L tells Mickey about the affair he

ENGLISH LITERATURE

MRS JOHNSTONE

- "He told me I was sexier than Marilyn Monroe" Recurring motif – Her looks were all she had going for her and when they were gone so was her husband.
- "By the time I was twenty-five, I looked like forty-two" Hyperbole – showing the impact on her appearance of having a hard life and so many children so young.
- "during the dance, she acquires a brush, dusters and a mop" stage directions – showing that she is happy to be working even if it is in a menial job
- "never put new shoes on a table" Foreshadowing – this superstition suggests that something bad will happen right from the start of the play. Mrs Johnstone believes in these superstitions.
- "silver trays to take meals on" / "a bike with both wheels on" – Mrs J & Mrs L Juxtaposition – Highlights the different lifestyles both boys would have. Envy from Mrs J. too
- "Mrs Lyons shows the Bible to Mrs Johnstone" Religious imagery and stage directions – showing how once a pact has been made and sworn on the bible you can't change your mind. Important symbolically as this is the point of no return in giving a baby away.
- "don't you ever come round here again" / "I'm very sorry, but it's Edward's bedtime" – Mrs J and Mrs I

THE NARRATOR

- "I'm up to here with hard luck stories" Milkman/narrator
- First person shows a lack of caring and the poverty that the family live in.
- "the devil's got your number" narrator
- Foreshadowing -song shows us that she won't get away with giving up her son
- did you never hear how the Johnstones died" narrator Foreshadowing - the narrator tells us the ending at the start of the play
- "the mother, so cruel, there's a stone in place of her heart" – narrator Hyperbole – The narrator exaggerates how horrible Mrs J. is which we find out if not true. He is being very judgemental and patronising towards her.
- "a debt is a debt, and must be paid" narrator repetition – here the narrator is giving a double meaning, physical money and the fact that she will have to pay for giving up her child.
- "There's a mad man" narrator Alliteration referring to Mickey and his desire to kill Edward with the gun from Sammy's robbery.
- "Do we blame superstition for what came to pass? Or could it be what we, the English, have come to know as class?" – the narrator
- Rhetorical questions questioning tone as to whether the blame lies with society rather than the characters themselves.
- "Did you ever hear the story of the Johnstone twins, as like each other as two new pins" – narrator Cyclical structure of the novel – repetition of the opening – showing their deaths were inevitable from the start.
- "the music pulsates and builds" stage directions showing the culmination of the action and the building to the deaths

EDWARD/MICKEY

- "mam" / "mummy" "pissed off" / "you say smashing things" "the two of them immediately wriggle and giggle with glee" – Edward and Mickey Juxtaposition and difference in speech patterns
- "we're blood brothers" Mickey and Edward Symbolism childhood ritual and the fact they are actually twins
- "if you cross your fingers and if you count from one to ten" the children Foreshadowing – showing childhood beliefs and superstitions
- "Peter Pan" Symbolism of never growing up foreshadowing later difficulty when both boys do grow up
- "take a flying fuck at a rolling donut" / "it's borin'" Juxtaposition of trouble at school for Mickey and Edward
- "a game of piggy-in-the-middle" the stage directions and foreshadowing – showing where Linda is in the middle of Mickey and Edward throughout both their childhood and into adulthood too.
- "workin' overtime" / "I go away to university tomorrow" Mickey and Edward statements – shows the contrast in lifestyles and class for both boys
- "How come you got everything... an' I got nothin'?" Mickey, to Edward Dialogue – jealousy from Mickey to Edward showing he sees the unfairness in society
- "I could have been him!" Mickey shouting accusatory tone –how unfair the whole situation has been and despondency Mickey at his poverty
- "walkin' round in circles" Mickey Tone Mickey is resentful and angry at what has happened
- "I grew up. An' you didn't, because you didn't need to" Mickey to Edward Emotive language – shows jealousy of Edward's freedom, money and Uni.
- "chronically depressed" Mickey Emotive language Mickey is reliant on pills after prison.
- "You sorted it out. You and Councillor Eddie Lyons" Mickey Sarcastic tone –not grateful for Eddie's help.
- Edward is "on a platform" stage directions –Edward is isolated and an easy target

MRS LYONS

- "give one to me" imperative demanding tone showing that she is desperate for a baby and will do anything to get one.
- "How can you possibly avoid some of them being put into care?" Rhetorical Question – persuade her to give one of the twins to her.
- "You'll be locked up" Directive threatening Mrs J.
- "It's just... just this place" repetition shows her bad state of mind
- "has a lethal-looking kitchen knife in her hand" Stage directions – she is trying to stab Mrs J. showing that she is going mad.

MINOR CHARACTERS

Mr Lyons

"it's a sign of the times, Miss Jones" Statement – showing that there is no work for anyone (linking to Mickey being unemployed and unable to find a job).

Police

"he was about to commit a serious crime" / "it was more of a prank, really" juxtaposition of the treatment of Mickey and Edward by the police – unfairness and class stereotyping Sammy "Sammy burnt the school down" Foreshadowing – that he will be trouble and lead Mickey into trouble too. Schoolteacher

"This is a boys' school, Lyons" –negative tone – showing Edward getting into trouble.

ENGLISH LITERATURE

... or BODMAS. Use the correct order of operations; take care when using a calculator.

- Brackets
- Indices (or pOwers)
- Division and Multiplication
- · Addition and Subtraction

Types of number

Integer: a "whole" number Factors; the divisors of an integer → Factors of 12 are 1, 2, 3, 4, 6, 12 Multiples; a "times table" for an integer (will continue indefinitely) → Multiples of 12 are 12, 24, 36 ... Prime number: an integer which has exactly two factors (1 and the number itself). Note: 1 is not a prime number.

HCF, LCM

Highest Common Factor (HCF) -> Factors of 6 are 1, 2, 3, 6 Factors of 9 are 1, 3, 9 HCF of 6 and 9 is 3 Lowest Common Multiple (LCM) ➔ Multiples of 6 are 6, 12, 18, 24, ... Multiples of 9 are 9, 18, 27, 36, ... LCM of 6 and 9 is 18

Prime factors

Write a number as a product of its prime factors: use indices for repeated factors: $720 = 5 \times 3^2 \times 2^4$

Special indices: for any value a:

 $a^0 = 1$ $a^{-n} = \frac{1}{n}$ $3^{-4} = \frac{1}{3^4} = \frac{1}{81}$

Calculating with fractions

Adding or subtracting fractions; use a common denominator...

 $\frac{4}{5} - \frac{1}{3} = \frac{12}{15} - \frac{5}{15} = \frac{7}{15}$ Multiplying fractions; multiply

numerators and denominators... $\frac{4}{7} \times \frac{2}{3} = \frac{8}{21}$

Dividing fractions; "flip" the second fraction, then multiply ...

Surds

Number

Look for the biggest square number factor of the number: $\sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5}$

Algebra

N8

N9

N13

N10

Standard form

Standard form numbers are of the form $a \times 10^n$ where $1 \le a < 10$ and *n* is an integer.

Standard units

1 tonne = 1000 kilograms 1 kilogram = 1000 grams

1 kilometre = 1000 metres 1 metre = 100 centimetres = 1000 millimetres 1 centimetre = 10 millimetres

N4

N4

N6, N7

N8

N3

N4

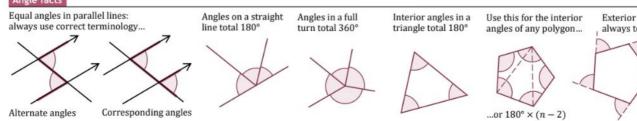
1 day = 24 hours1 hour = 60 minutes = 3600 seconds 1 minute = 60 seconds

Fractions, decimals Fraction is numerator + der

 $\frac{5}{2} = 5 \div 8 = 0.625$

Use place values to change decimals to fractions. Simplify where possible.

 $0.45 = \frac{45}{100} = \frac{9}{20}$


Learn the most frequently used ones:

1	1	1	1	3
2	4	10	5	4
0.5	0.25	0.1	0.2	0.75

Transformations

- Rotation Reflection Line of reflection
 Centre of rotation Translation Angle of rotation Clockwise or anticlockwise
- Vector

Angle facts

Rounding

Ratio, proportion and rates of change

Truncate the number, then use a "decider digit" to round up or down. Decimal places: use the decimal point

N15

N15

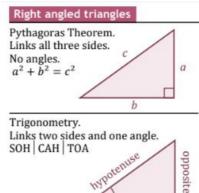
-> 162.3681 to 2dp: 162.36 81 = 162.37 to 2dp Significant figures: use the first nonzero digit.

- -> 162.3681 to 2sf; 16 2.3681 = 160 to 2sf
- 0.007 039 to 3sf;
- 0.007 03 9 = 0.007 04 to 3sf

Error intervals

Find the range of numbers that will round to a given value: \Rightarrow x = 5.83 (2 decimal places) $5.825 \le x < 5.835$ \rightarrow y = 46 (2 significant figures) $45.5 \le v \le 46.5$ Note use of \leq and <, and that the last significant figure of each is 5 G9

radius


Parts of a circle

arc

chore

Enlargement

egment

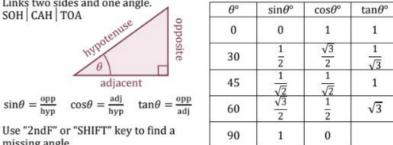
Use "2ndF" or "SHIFT" key to find a

missing angle

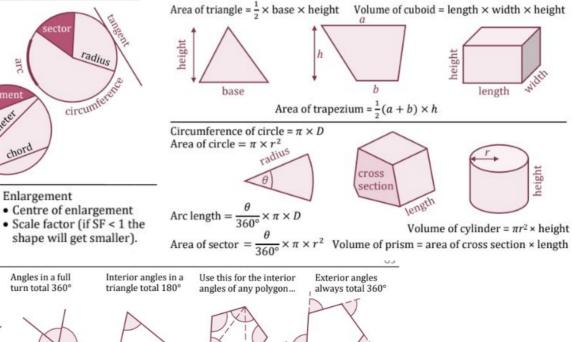
Areas and volumes

adjacent

Geometry & measures


Probability

G20, G22


Statistics

The longest side of any right angled triangle is the hypotenuse; check that your answer is consistent with this.

Special values of sin, cos, tan Learn (or be able to find without a calculator)

G16, G17, G18, G23

MATHEMATICS - Foundation

) Number 🛛 🔴 Algebra 🗶 Rati	o, proportion and rates of change	e 🔴 Geometry & measures	🔴 Probability 🛛 🌑 Statistics
Quadratics A18	$y = \mathbf{m}\mathbf{x} + \mathbf{c} \tag{A9}$	Sequences A24, A25	Division using ratio R5	Averages S4
Solve a quadratic by factorising. Solve $x^2 - 8x + 15 = 0$ Put into brackets (taking care with any negative numbers) (x - 3)(x - 5) = 0 then either $x - 3 = 0$ or $x - 5 = 0$ so that $x = 3$ or $x = 5$.	Equation of straight line $y = mx + c$ m is the gradient; c is the y intercept: Find the equation of the line that joins (0,3) to (2,11) Find its gradient $\frac{11-3}{2-0} = \frac{8}{2} = 4$ and its y intercept	Triangular numbers: 1st 2nd 3rd 4th 5th 1 3 6 10 15 Square numbers $(n^2 = n \times n)$: 12 2 ² 3 ² 4 ² 5 ²	Use a ratio for unequal sharing → Divide £480 in the ratio 7:5 7 + 5 = 12, then £480 ÷ 12 = £40 7 × £40 = £280, 5 × £40 = £200 (check: £280 + £200 = £480 ✓) Ratio and fractions	Mode: most frequently occurring Median: put the data in numerical order, then choose the middle one Mean = $\frac{\text{total of items of data}}{\text{number of items of data}}$ Correlation
Difference of two squares A4 $a^2 - b^2 = (a + b)(a - b)$		1 4 9 16 25 Cube numbers $(n^3 = n \times n \times n)$:	Link between ratios and fractions Boys to girls in ratio 2 : 3	Positive Negative correlation correlation
$\Rightarrow x^2 - 25 = (x + 5)(x - 5)$ Simultaneous equations A19 $\Rightarrow Solve \begin{cases} 2x + 3y = 11 \\ 3x - 5y = 7 \end{cases}$ Multiply to match a term in x or y $\begin{cases} 10x + 15y = 55 \\ 9x - 15y = 21 \end{cases}$ Add or subtract to cancel $19x = 76, \text{ so } x = 4$ Finally, substitute and solve $2 \times 4 + 3y = 11, \text{ so } y = 1$ Rearrange a formula $A5$ The subject of a formula is the term on its own. Use rules that "balance" the formula to change its subject $\Rightarrow Make x \text{ the subject of } 2x + 3y = z$ Here, subtract 3y from both sides $2x = z - 3y$ then divide both sides by 2 $x = \frac{z - 3y}{2}$ Laws of indices $A4$	- have gradient 2 so are parallel. Expanding brackets A4 p(q+r) = pq + pr $(x + a)(x + b) = x^2 + ax + bx + ab$ (2x - 3)(x + 5) $= 2x^2 - 3x + 10x - 15$ $= 2x^2 + 7x - 15$ Reverse of expanding is factorising - putting an expression into brackets. Algebraic notation A $ab = a \times b$ 3y = y + y + y $a^2 = a \times a$ $a^3 = a \times a \times a$ $a^2b = a \times a \times b$ $\frac{a}{b} = a \div b$ Equations and identities A An equation is true for some particular value of x		$\frac{2}{5} \text{ are boys, } \frac{3}{5} \text{ are girls.}$ Percentages $y \text{ percent of } x = \frac{y}{100} \times x$ $\frac{26}{100} \times £58 = £15.08$ $£58 + £15.08 = £73.08$ $y \text{ as a percentage of } x = \frac{y}{x} \times 100\%$ $\Rightarrow \text{ The population of a town increases from 3500 to 4620}$ Find the percentage increase. $\frac{1120}{3500} \times 100\% = 32\%$ Note: fraction = $\frac{\text{increase}}{\text{original}}$ Learn the most frequently used ones: $\frac{1}{2} \frac{1}{4} \frac{1}{10} \frac{1}{5} \frac{1}{100}$ $50\% 25\% 10\% 20\% 1\%$	Probability P8, P9 $p = \frac{n(\text{equally likely favourable outcomes})}{n(\text{equally likely possible outcomes})}$ $p = 0 \qquad \text{impossible} \\ 0$
For any value <i>a</i> : $a^x \times a^y = a^{x+y}$	2x + 1 = 7 is true if x = 3 but an identity is true for every value of x	Standard graphs A12		Apply these rules to tree diagrams.
$\frac{a^{x}}{a^{y}} = a^{x-y}$ $(a^{x})^{y} = a^{xy}$ $(a^{x})^{y} = a^{xy}$ $(a^{y})^{y} = a^{y}$ $(a^{y})^{y} = a^{y}$ $(a^{y})^{y} = a^{y}$	$(x + a)^2 \equiv x^2 + 2ax + a^2$ (note the use of the symbol \equiv)	$\begin{array}{c c} y \\ y $	y y y y y y y y y y	$y = x^{3}$

MATHEMATICS - Foundation

Number Algebra Ratio, proportion and rates of change

N9

N10

N15

A3

Geometry & measures

A7

A9

A20

A16

Functions

Probability

Statistics

A19

Ouadratics A11, A18 If a quadratic equation cannot be

factorised, use the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ → Solve $2x^2 + 3x - 7 = 0$ $x = \frac{-3 - \sqrt{9 - (-56)}}{2 \times 2} = -2.73$ or $x = \frac{-3 + \sqrt{9 - (-56)}}{2 \times 2} = 1.23$

Complete the square to find the turning point of a quadratic graph. $y = x^2 - 6x + 2$

$y = (x-3)^2 - 9 + 2$ $y = (x - 3)^2 - 7$ Turning point is at (3, -7)

Simultaneous equations

One linear, one quadratic; Solve $\begin{cases} x+3y = 10 \\ x^2+y^2 = 20 \end{cases}$

Rearrange the linear, and substitute into the quadratic

```
x = 10 - 3y
     so(10-3y)^2 + y^2 = 20
Expand and solve the quadratic
    100 - 60v + 9v^2 + v^2 = 20
       10y^2 - 60y + 80 = 0
          y = 2 \text{ or } y = 4
```

Finally, substitute into the linear and solve, pairing values... $x + 3 \times 2 = 10$ so (x, y) = (4, 2) $x + 3 \times 4 = 10$ so (x, y) = (-2, 4)

```
Sequences
                       A24, A25
```

nth term of an arithmetic (linear) sequence is bn + cnth term of 5, 8, 11, 14, ... is 3n+2 (always increases by 3 first term is $3 \times 1 + 2 = 5$) *n*th term of a quadratic sequence is $an^2 + bn + c$ ➔ First three terms of $n^2 + 3n - 1$ are 3, 9, 17, ... Geometric sequence; multiply each term by a constant ratio

➔ 3, 6, 12, 24, ... (ratio is 2) Fibonacci sequence; make the next term by adding the previous two ... ➔ 2, 4, 6, 10, 16, 26, 42, ...

N5

N6, N7

N8

Product rule for counting: \Rightarrow 4 × 3 × 2 × 1 = 24 ways to arrange the letters P, I, X and L

Powers and roots

Listing strategies

Special indices: for any value a: $a^0 = 1$ $a^{-n} = \frac{1}{a^n}$ $a^{\left(\frac{p}{q}\right)} = \sqrt[q]{a^p}$ $3^{-4} = \frac{1}{3^4} = \frac{1}{81}$ $8^{\binom{2}{3}} = \sqrt[3]{8^2} = 4$

Surds

Look for the biggest square number factor of the number:

 $\sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5}$ ->

Rationalise the denominator N8

Multiply the numerator and denominator by an expression that makes the denominator an integer:

$$4 = \frac{4 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{4\sqrt{7}}{7}$$

$$\frac{2}{4 + \sqrt{5}}$$

$$= \frac{2}{4 + \sqrt{5}} \times \frac{4 - \sqrt{5}}{4 - \sqrt{5}} = \frac{2(4 - \sqrt{5})}{11}$$

Standard form

Standard form numbers are of the form $a \times 10^n$, where $1 \le a \le 10$ and n is an integer.

Recurring decimals

Make a recurring decimal a fraction: -> n = 0.236(two digits are in the recurring pattern, so multiply by 100) 100n = 23.6(this is the same as 23.636) 99n = 23.636 - 0.236 = 23.4 $n = \frac{23.4}{99} = \frac{234}{990} = \frac{13}{55}$

Error intervals

Find the range of numbers that will round to a given value: \Rightarrow x = 5.83 (2 decimal places) $5.825 \le x < 5.835$ \rightarrow y = 46 (2 significant figures) $45.5 \le v \le 46.5$ Note use of \leq and <, and that the last significant figure of each is 5

Equations and identities

An equation is true for some particular value of x→ 2x + 1 = 7 is true if x = 3...but an identity is true for every

value of x $(x+a)^2 \equiv x^2 + 2ax + a^2$

(note the use of the symbol \equiv)

Transformations of curves	A13
Starting with the curve $y = f(x)$:
Translate $\begin{pmatrix} 0 \\ a \end{pmatrix}$ for $y = f(x) + a$	
Translate $\binom{-a}{0}$ for $y = f(x + a)$	
Reflect in <i>x</i> axis for $y = -f(x)$	
Reflect y axis for $y = f(-x)$	

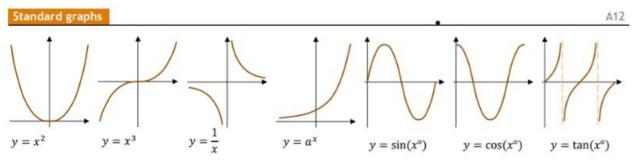
A15

A5

Velocity - time graph

Gradient = acceleration (you may need to draw a tangent to the curve at a point to find the gradient); Area under curve = distance travelled.

Laws of indices


Laws of indices	A4
For any value <i>a</i> :	
$a^x \underset{a^x}{\times} a^y = a^{x+y}$	
$\frac{a^x}{a^y} = a^{x-y}$	
$ \begin{array}{c} a^{y} \\ (a^{x})^{y} = a^{xy} \end{array} $	
$(a^{x})^{y} \equiv a^{xy}$	
$\Rightarrow \left(\frac{2pq^4}{p^3q}\right)^3 = \frac{8p^3q^{12}}{p^9q^3} = \frac{8q^9}{p^6} \text{ or } 8q^{12}$	$a^{9}n^{-6}$
(p^3q) p^9q^3 p^6	11
Difference of two squares	14
billerence of two squares	A-1

$$a^2 - b^2 = (a + b)(a - b)$$

 $x^2 - 25 = (x + 5)(x - 5)$

Rearrange a formula

The subject of a formula is the term on its own. Rearrange to Make x the subject of 2x + ay = y - bx

> 2x + bx = y - ayx(2+b) = y - ay $x = \frac{y - ay}{2 + b}$

MATHEMATICS - Higher	٢
-----------------------------	---

Combining functions:

$$fg(x) = f(g(x))$$

$$fg(x) = x + 3 \text{ and } g(x) = x^{2}$$

$$fg(x) = x^{2} + 3$$

$$gf(x) = (x + 3)^{2}$$
The inverse of f is f^{-1}

$$ff(x) = 2x + 5 \text{ then}$$

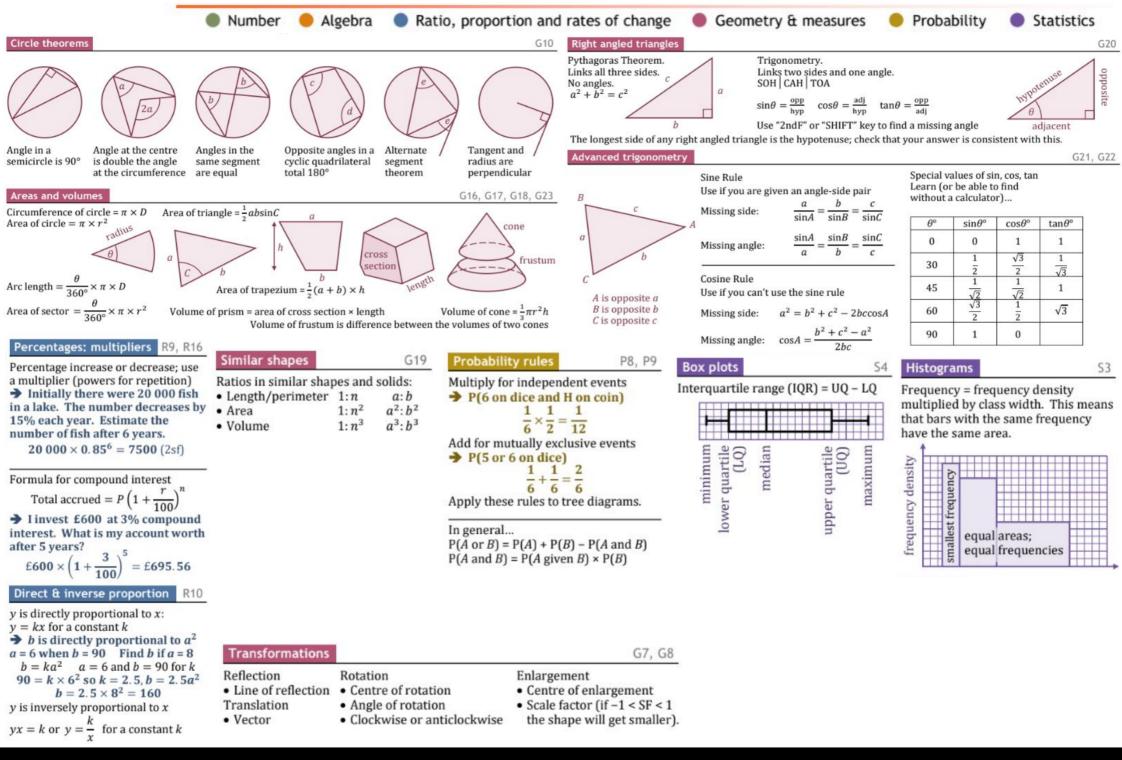
$$f^{-1}(x) = \frac{x - 5}{2}$$

Equation of straight line y = mx + cm is the gradient; c is the v intercept: ➔ Find the equation of the line that joins (0,3) to (2,11) Find its gradient... 8 11 - 3 $\frac{1}{2-0} = \frac{1}{2} = 4$... and its y intercept ... Passes through (0, 3), so c = 3Equation is v = 4x + 3

Parallel lines: gradients are equal: perpendicular lines: gradients are "negative reciprocals". \Rightarrow y = 2x + 3 and y = 2x - 5 are parallel to each other; y = 2x + 3and $y = -\frac{1}{2}x + 3$ are perpendicular

Iteration

You will be given the formula to use: Solve $x^3 + 6x + 4 = 0$ by using the iteration $x_{n+1} = \sqrt[3]{6x_n - 4}$


Start with $x_1 = -2.8$

$$x_2 = \sqrt[3]{6 \times (-2.8)} - 4 = -2.750$$

 $x_3 = \sqrt[3]{6 \times (-2.750...) - 4} = \cdots$ Repeat until you know the solution, or you do as many as the question says.

Equation of a circle

 $x^2 + y^2 = r^2$ is a circle with centre (0,0) and radius r. $\Rightarrow x^2 + y^2 = 25$ has centre (0,0) and radius 5

MATHEMATICS - Higher

Key points to learn		Key points to learn		Trilogy B9: Respiration
.Breathing	Not the same as respiration. Method of obtaining oxygen from the air	Anaerobic respiration in animal cells	Glucose 🗆 Lactic acid Much less energy provided than	Bioenergetics Knowledge Organiser
	Process by which all living things get energy from glucose and oxygen		aerobic respiration Leads to an oxygen debt which	Big picture (Biology Paper 1)
	Happens continuously in plants an animals. Provides lots of energy	actic acid	requires more oxygen after exercise is complete to break	Cells and Disease and
Aerobic respiration	Glucose + Oxygen 🗆 Carbon + Water dioxide		down the lactic acid Causes muscles to tire and cramp	organisation bioenergetics Cell structure and Communicable
	C6H12O6 + 6O2 □ 6CO2 + 6H2O		The sum of all the reactions in a	transport diseases
	Exothermic reaction - gives off heat		cell or the body of an organism	Cell division Preventing and treating disease
	Occurs within mitochondria in cells	Metabolism	Energy provided by respiration is used in these metabolic reactions	Organisation and the digestive
	During exercise body needs more energy so rate of aerobic respiration		to make new molecules	system
D	 increases. This needs: 1. Heart rate increases - blood carries glucose and oxygen faster 2. Breathing rate and volume 		 Includes these 5 reactions: 1. Turning glucose into starch, glycogen and cellulose 2. Making lipids from glycerol and 	Organising animals and plants Respiration
Response to exercise	increases - lungs obtain more oxygen 3. Glycogen stores turned into glucose - more glucose available	Metabolic reactions	fatty acids 3. Using glucose and nitrate ions to make amino acids 4. Respiration	Background It is one of the R's in MRS GREN. All living
	More respiration means you get hotter and may need to cool down		5. Turning excess proteins into urea	things do it, all of the time. Every single one of your 10 trillion living body cells are doing
Anaerobic respiration	Provides energy from glucose if there is not enough oxygen available	Metabolic rate	The rate at which reactions happen in an organism	it right now. As are the 100trillion microbes living in your intestines!
Anaerobic	Called fermentation. Used to make	Lipids	Fats and oils	Additional information
respiration	bread and alcohol	Starch	Carbohydrate store in plants	The five metabolic reactions are all covered
in plants and yeast	Glucose Ethanol + Carbon dioxide	Glycogen	Carbohydrate store in animals	in more detail in this course. Remember that they all use enzymes.
	Biological catalyst. Helps reactions to	Cellulose	Makes cell walls in plants	'Aerobic respiration' is often known as just
Enzymes	happen in living things	Urea	Waste product from liver	'respiration'. It is photosynthesis in reverse.

Key points to learn		Ke	y points to learn	Trilogy B5: Communicable
	Large microbe Living	Causes of ill health	Pathogens, diet, stress, life situations/conditions	diseases Collins Revision Guide: Infection and response
	Divide by splitting in two	Non-	Cannot be transmitted from one person to another	Knowledge Organiser
Bacteria	May produce toxins to make us ill	communicable diseases	Eg heart disease, arthritis	Big picture (Biology Paper 1)
	Cause: • Salmonella - food poisoning • Gonorrhoea - sexually	lgnaz Semmelweis	Doctor in mid-1850s who persuaded doctors to wash their hands	Cells and Disease and bioenergetics
	transmitted disease (STD) Smallest microbe	Louis Pasteur	Showed that microbes caused disease. Developed vaccines	Cell structure and transport Communicable diseases
	Not alive Live and reproduce inside cells	Vaccines	An inactive form of a pathogen used to prepare your immune system	Cell division Preventing and treating disease
Viruses	Cause: • Measles - can be fatal • HIV - can turn into AIDS • Tobacco mosaic virus (TMV) affects photosynthesis in plants The other type of microbe. Living	Human defences against pathogens	 Skin barrier - covers your body Nose - hair and mucus act as trap Trachea and bronchi - covered in cilia and mucus Stomach - makes acid to destroy Immune system - white blood cells defend us in three ways 	Organisation and the digestive system Organising animals and plants Respiration
Fungi	Cause:	Trachea	Pipe from mouth to bronchi	Background
i ungi	 Rose black spot - affects photosynthesis in plants 	Bronchi	Pipe into each lung	
Pathogens	Microbes/microorganisms that cause diseases	Cilia	Tiny hair-like cells <u>1. Phagocytosis</u> ingest	Nobody likes getting ill. To better avoid diseases, we need to understand what causes and how our bodies try and
	Spread by air, contact and water		microbes	defend us from them.
Communicable	Infectious diseases that can be passed from one person to another	White blood cells	2. Produce antibodies chemicals to destroy microbes	Additional information
diseases	Caused by pathogens		3. Produce antitoxins	This topic links really well with B6 which is all about how we can further defend
Malaria	Is a protist disease. Spread by mosquito bites		chemicals to cancel-out toxins made by pathogens	against these diseases.

Key points to learn		Key points to learn		Trilogy: B6 Preventing and
	Large microbe. Living		An inactive form of a pathogen used to prepare your immune system	treating diseases
Bacteria	Divide by splitting in two May produce toxins to make us ill	Vaccines	White blood cells are able to respond quickly to prevent infection	Infection and response Knowledge Organiser
	Cause: - Salmonella - Gonorrhoea		MMR is a vaccine against mumps, measles and rubella	Big picture (Biology Paper 1)
	Smallest microbe. Not alive		Medicines that kill specific bacteria.	Cells and Disease and
	Live and reproduce inside cells		Greatly reduced deaths from	organisation bioenergetics
Viruses	Cause: - Measles - HIV	Antihistiss	bacterial diseases Cannot kill viruses	Cell structure and transport diseases
	- Tobacco mosaic virus (TMV) Microbes/microorganisms that	Antibiotics	Some bacteria are becoming resistant which is very concerning	Cell division Preventing and treating disease
Pathogens	cause diseases Spread by air, contact and water		Alexander Fleming discovered	Organisation and the digestive system
Communicable	Infectious diseases that can be		Need to be checked for toxicity (safety), efficacy (effectiveness) and	Organising animals and Photosynthesis
diseases	Caused by pathogens		dose First trials are done using cells,	plants Respiration
Louis Pasteur	Showed that microbes caused disease. Developed vaccines	Making aeiv inals	tissues and live	Background
Painkillers	No effect on the pathogens but do reduce the symptoms of illness. Eg aspirin and paracetamol	medicines	Clinical trials use healthy volunteers and patient: 1. Very low doses at start of trial 2. If safe, more trials done	Nobody likes getting ill. To better avoid diseases, we need to understand what
Destroying viruses	Is very difficult without damaging body tissue as they live inside cells		 In double blind trial some patients given placebo 	causes and how our bodies try and defend us from them.
Discovery	Medicines used to be extracted from plants and microorganisms eg		<u>1. Phagocytosis</u> ingest microbes	Additional information
of new drugs	 Heart drug <i>digitalis</i> from foxglove Painkiller aspirin from willow tree Penicillin from mould 	White blood cells	2. Produce antibodies chemicals to destroy microbes	This topic links really well with B6 which
Placebo	A tablet with no active medicine content		3. Produce antitoxins chemicals to cancel-out toxins made by pathogens	is all about how we can further defend against these diseases.

Ke	<u>y points to learn</u>	K	ey points to learn	Trilogy B7: Non-communicable
Non- communicable diseases	Cannot be transmitted from one person to another Eg heart disease, arthritis	Malignant tumour	Are cancers Invade neighbouring tissues and spread throughout body forming secondary tumours	diseases Organisation Knowledge Organiser
Causes of ill health	Pathogens, diet, stress, life situations/conditions		Not cancers	Big picture (Biology Paper 1)
Communicable	Infectious diseases that can be passed from one person to another	Benign tumour	Growths of abnormal cells in one area that do not invade other parts of the body	Cells and Disease and bioenergetics
diseases	Caused by pathogens (microbes)		A defective immune system can	Cell structure and Communicable
Coronary heart disease	Layers of fat build up inside coronary arteries, reducing blood flow and oxygen for the heart Stents used to keep arteries open	Different diseases can interact	 lead to more infections Viruses can trigger cancer Pathogens can trigger allergies Physical ill health can lead to depression and mental illness 	transportdiseasesCell divisionPreventing and treating diseaseOrganisation and the digestiveNon-communicable diseases
	Statin medicines used to reduce		Carbon monoxide harms unborn babies	system
	blood cholesterol levels which reduces rate of fatty build up	Smoking	Carcinogens increase risk of cancers	Organising animals and Photosynthesis
Heart failure	A failed heart can be replaced by a donor heart	and risk of disease	Increases risk of coronary heart disease	plants Respiration
Faulty heart valves	Can be replaced by biological/mechanical valves		Increases risk of lung disease and lung cancer	<u>Background</u>
Coronary arteries	Blood vessels that supply the heart	Risks of diet, exercise	Increases risk of coronary heart disease and high blood pressure	A reported 25% of people in the UK are now obese. Around 17% of adults smoke
	Uncontrolled growth and division	and obesity	Obesity can lead to Type 2 diabetes	and many more consume alcohol. So,
Cancer	of cells	Alcohol	Damages the liver and carcinogens increase risk of liver cancer	what are the risks of these lifestyle choices?
	Lifestyle and genetic factors can increase risks of some cancers	and risk of disease	Affects brain function	<u>Maths skills</u>
_	Lump or growth in a part of the	uiscase	Passes to and harms unborn babies	Use scatter diagrams to
Tumour	body, uncontrolled cell division State of physical and mental well-	. Exposure to ionising	EM Waves (UV rays, X-rays Gamma rays) and radioactive material	identify correlation between factors.
Health	being	radiation	Can increase risk of cancers	Using samples to estimate population trends

WORKING SCIENTIFICALLY

Key terms	Definition
Independent variable	A variable in an experiment that you change to find out its effect on the dependent variable
Dependent variable	Variable that is measured in an experiment to see how it changes
Control variable	Variables that are kept the same in an experiment to ensure it doesn't affect the dependent variable
Repeats	The number of times the experiment is carried out to collect data from which to calculate a mean
Mean	The average when repeated data is added together and divided by the number of repeats (anomalous data is not included in the calculation)
Equipment	The scientific apparatus used to make the experiment accurate.
Anomalous	Results that do not fit the pattern seen in other data or are much higher or lower than other repeated readings (outliers).
Equipment	The scientific apparatus used to make the experiment accurate.
Valid	Suitability of the method used to answer the question being asked.
Hypothesis	A proposal intended to explain certain facts or observations.
Prediction	A forecast or statement about what should happen in an experiment.

Key Facts:

Investigating an **independent variable** and its' effect on a **dependent variable** allows us to look for a **correlation**. This means we can describe a relationship between the two variables. To do this we need to:

- Make a **predication** based on some previous scientific knowledge.
- Use equipment that allows us to make accurate measurements
- Identify hazards and take precautions against them
- · Record our results in a meaningful way
- Repeat the test to make sure the data we get is the same each time
- · Process the data
- · Analyse data to identify relationships
- Evaluate the method and the data to show it is accurate and valid

Hypothesise and Variables

- A hypothesis is a predication made about an experiment based on some previous scientific knowledge.
- The hypothesis is then tested by carrying out the experiment.
- When designing experiments, there are three types of variable that we need to consider:
- 1. The dependent variable (what we measure)
- 2. The independent variable (what we change)
- 3. The control variables (what we keep the same)

Methods

When writing a method you should include:

- 1. A clear sequence
- Information on which equipment to use
- 3. Volumes and masses for reagents
- 4. Scientific language

Precision

Firstly, 25cm³ sulphuric acid was added to a small beaker. Up ig a spatula, excess insoluble base (copper oxide powder) was added to the area. Check the base is in excess by looking for remaining powder in the beaker. Next, the excess base was filtered out using filter paper in a funnel. The filtrate was allowed to filter into a conical flask. When filtration was complete, the filter paper was discarded and the filtrate solution was poured into an evaporating dish. The solution was left for a few days or the evaporating dish heated for the dissolved salt to crystallise.

Equipment

Sequencing

Equipment

This is some of the most common laboratory equipment that you will be using. Ensure that you learn each piece.

Equipment	Picture	Use	Equipment	Picture	Use
Beaker		For pouring and transferring liquids and solutions.	Test Tube		For carrying out chemical reactions with small amounts of liquid
Conical Flask		For carrying out reactions	Boiling Tube		A boiling tube is used to heat substances in a
Bunsen Burner		To heat substances	Measuring Cylinder		Bunsen Burner To accurately measure out volumes of liquid
Tripod	Π	To support	Spatula	() annan	To move small amounts of
Gauze		To place an object on for example conical flask that		~	solid powders
Heataraaf		you are going to heat.	Stirring Rod		To stir solutions.
Heatproof mat		To protect the desk from the heat produced by the			
		Bunsen Burner and any spillages from the substances which are being heated	Thermometer	/	To measure the temperature of a substance
Evaporating basin	\bigcirc	To evaporate the water from solutions. Leaving behind the solute.	Tongs	S	To hold an move hot solids for example pieces of metal

Results Tables

- In a results table the independent variable should always go on the left.
- When drawing a results table the following things are good practice::
- 1. Show all repeat measurements
- 2. Include the units in the headings
- 3. Circle anomalies
- 4. Discount these when calculating a mean

For example:

Concentration of acid (M)	Time tak complete	en for read e (s)	ction to	Mean (s)
0.1	102.1	105.6	103.4	103.7
0.2	88.8	86.5	87.2	87.5
0.3	69.1	67.3	64.2	66.9
0.4	56.2	40.1	53.3	54.8
0.5	32.1	30.1	33.2	31.8

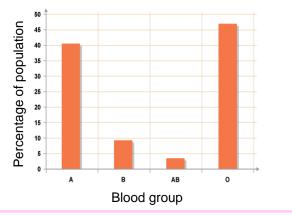
Maths skills

To calculate a mean:

- Add together the values for collected data.
- Divide the total by the number of data values used.

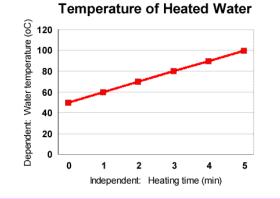
E.g. No anomalies: 102.1 + 105.6 + 103.4 = 311.1 then 311.1 ÷ 3 = **103.7**

E.g. With anomaly: 56.2 + 53.3 = 109.5 then 109.5 ÷ 2 = **54.75**


Notice that we left out the smaller number **40.1** and divided by **2**.

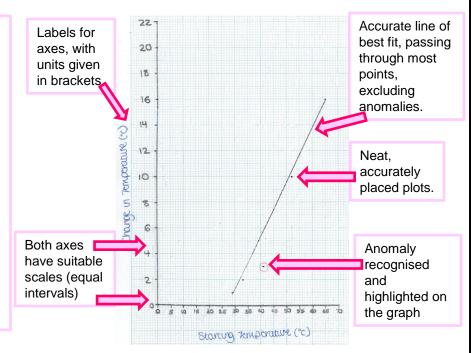
In the table the values are all to 1 decimal place so we round 54.75 to 54.8

Key terms	Definition
Continuous data	Can take any value as whole number or decimals; usually collected by measuring variables, such as mass, volume or density.
Discrete data	Can only take exact whole number (integer) values; usually collected by counting.
Bar chart	Used when one variable is categorical (a label, name or group)
Line Graph	Used when both variables are continuous (have numerical data from measuring)
Line of best fit	Drawn so that plotted points are evenly distributed either side of the line; can be straight or curved.
Evaluate	Use the information supplied, as well as knowledge and understanding, to consider evidence for and against when making a judgement.
Hazard	Something that can cause harm e.g. an object, a property of a substance or an activity
Risk	The likelihood that a hazard will actually cause harm.
Precaution	Action to remove or reduce a risk


Discontinuous data

Discontinuous or categoric data can only take certain values for example eye colour and blood group, these should be plotted on a bar graph.

Continuous data


Continuous data can take any value, for example height or temperature. This should be plotted on a line graph.

Drawing good line graphs

When drawing a graph you should:

- Plot the dependent variable on the y axis and independent variable on the x axis
- 2. Label axis and include units
- 3. Use small precise crosses to mark your points
- 4. Add a line of best fit which goes smoothly though as many points as possible (this does not have to be a straight line, it can be a curve but it is not a dot to dot exercise!)
- 5. Circle anomalies and don't include them when drawing the line of best fit

SCIENCE

The Denetivity Cariae	Darctions of Aside	Darctione with Parkonstae
Here's a mnemonic to help vou learn the order:	The general formula for the reaction between an acid and a metal is:	
(militaria) and a second se	acid + metal — salt + hvdrogen	
purpte (potassium)		
slime (sodium)	For example: hydrochloric acid + sodium — Sodium chloride + hydrogen	
can (calcium)	2HCl + 2Na — 2NaCl + H2	+ carbon dioxide
make (magnesium)	When an acid reacts with an alkali, a neutralisation reaction takes place	Hace PH Scale Neutrol
	and a salt and water are produced.	Add
careless (carbon) carbon aluminium	The general formula for this kind of reaction is as follows:	Strong Weak V Weak Strong
	acid + alkali — salt + water	1 2 3 4 5 6 7 8 9 10 11 12 13 14
iron insare (iron)	hvdrochloric acid + sodium hvdroxide 🗕 sodium chloride + water	
tin tin	HCL + NaOH - NaCL + H5O	In aqueous solutions, acids produce H ⁺ ions and alkalis produce OH ⁻ ions.
lead hydrosen lead	Naming Salts	Neutral solutions are pH7 and are neither acids or alkalis.
	the transform the	For example, in neutralisation reactions, hydrogen ions from an acid
silver silver	Acta Usea Sat	1
cametes (copper)	The second hydrochloric d	H+ + OH- + H2O
	part of the name comes from the nitric nitrate	Making Calta
gorillas (gold)	acid that was used to make it. sulfuric sulfate	Making Soluble Salts
The reactivity series is a league table for metals. The more reactive metals	For example sodium chloride	1. Make a saturated
are near the top of the table with the least reactive near the bottom.		solution by stirring to remove the
In chemical reactions, a more reactive metal will displace a less	Redox Reaction	copper oxide into
reactive metal.	when metals react with acids, they undergo a redox reaction. A redox	the sulfuric acid oxide solid.
Reactions of Metals with Water	reaction occurs when poin usidation and reduction take place a same time	until no more
Metals, when reacted with water, produce a metal hydroxide and		will dissolve.
hydrogen.	For example:	
lithium + water — Iithium hvdroxide + hvdrogen	2H⁺ + Ca → Ca ²⁺ + H ₂	4.
211 + 2H-0 - H + HOI IC	The ionic equation can be further split into two half equations.	a state
	Ca - Ca ²⁺ + 2 ⁶⁻	this over a Bunsen evaporating basin
The more reactive a metal is, the faster the reaction.		burner to heat the and heat until
Reactions of Metals with Dilute Acid	Oxidation is loss of electrons.	water. Place an crystals begin
Metals, when reacted with acids, produce a salt and hydrogen.	2H ⁺ + 2e ⁻ → H ₂	evaporating dish on to form.
Sodium + hydrochloric acid 🕕 sodium chloride + hydrogen	Reduction is gaining of electrons.	top of the beaker.
2Na + 2HCl → 2NaCl + H2	Reactions with Bases	6 Onco conflord motion
Metals that are below hydrogen in the reactivity series do not react with	The general formula for the reaction between an acid and a metal oxide is:	J. Once coorea, pour
dilute acids.	acid + metal oxide —> salt + water	
	sulfuric acid + copper oxide — copper sulfate + water)
	H ₂ SO ₄ + CuO - CuSO ₄ + H ₂ O	
		and leave to cool for 24 hours.

If the mean is the parameter is t	monic to help you learn the order. prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime prime	The Reactivity Series		Reactions of Acids		Reactions with Carbonates
stimult (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$\begin{array}{c} \label{eq:constraint} \\ (1) \\ (2) \\ (3) \\ (3) \\ (3) \\ (4) \\$	Here's a mnemonic to help you learn the order:		The general formula for the reaction between	an acid and a metal is:	The general formula for the reaction between an acid and a carbonate is:
(1) Decreangle For example: hydrochloric acid + sodium chloride + hydrogen (1) cation cation cation cation (2) Carbon cation cation sodium chloride + hydrogen (2) Carbon cation cation sodium chloride + hydrogen (2) Diplope bydrogen sodium chloride + hydrogen (2) Diplope cation sodium chloride + water (2) Diplope bydrogen sodium chloride + water (2) Diplope Diplope Sodium chloride + water (2) Diplope Diplope Sodium chloride + water (2) Diplope Diplope Diplope (2) Diplope Diplope Diplope (2) Diplope Diplope Diplope (2) Diplope Diplope Diplope Diplope Diplope	The processing in the second section is a fail of the section takes place action and a stat and water are produced. Evel: $z > 2_{NA} \rightarrow ZNACI + h_3$ (1) carbon carbon alon interferentian action takes place action take place active arear to action take place at the action action take place at the active arear to action take place at the arear action. A reduction take place at the arear action take place at the arear action. A reduction take place at the arear action take place at the arear action take place at the arear action. A reduction take place at the arear action take place at the arear action taction take place at the arear action take place at the arear action take action. A reduction take place at the arear action take place at the arear action take action. A reduction take place at the arear action take action. A reduction take action take actin take actin take actin take action.	purple (potassium)		acid + metal 🛶 salt + hydrogen		acid + carbonate 🛶 salt + water + carbon dioxide
 The first in the first in the	(i) Description (ii) Calcining Description (iii) Carbon Calcining Description (iii) Carbon Carbon Calcining Description (iii) Mydrogen Minimitian Description Section is as follows: (iii) Mydrogen Minimitian Description Section is as follows: (iii) Mydrogen Mydrogen Description Section is as follows: (iii) Mydrogen Minimitian Description Section is as follows: (iii) Mydrogen Description Section is as follows: (ii) Mydrogen Description Minimitian (iii) Mydrogen Description Minimitian (iii) Mydrogen Minimitian Description Minimitian (iii) Mydrogen construction takes place Minimitian Description Minimitian (iii) Mydrogen construction takes Minimitian Description Minimitian (iii) Mydrogen construction Minimitian Description Minimitian <th< td=""><td>slime (sodium)</td><th>potassium</th><td>For example: hydrochloric acid + sodium> soc</td><td>dium chloride + hydrogen</td><td>+ calcium carbonate 🗕</td></th<>	slime (sodium)	potassium	For example: hydrochloric acid + sodium> soc	dium chloride + hydrogen	+ calcium carbonate 🗕
estum catcum (1) Improvention and stand water are produced. (1) Induction and stand water are produced. (2) Induction and stand water are produced. (3) Induction and stand water are produced. (4) Induction and stand water are produced. (5) Induction and stand water are produced. (6) Induction and stand water are produced. (7) Induction and stand water are produced. (6) Induction and stand water are produced. (7) Induction and stand water are produced. (8) Induction and stand water are produced. (9) Induction and stand stand stand and stand st	exaction eaterim (i) Ingreetim (ii) Indrine (iii) Indrine (iiii) Indrine (iii) Indrine (iii) Indrine (iii) Indrine (iii) Indrine (iii) Indrine (iii) Indrine (iiii) Intercation take (iii) Intercation take (iii) Intercation take (iiii) Intercation take (iiii) Intereation	can (calcium)	sodium	2HCl + 2Na 2NaCl + H2		+ carbon dioxide
(i) magnetizing (ii) carbon and a sait and water are produced. (iii) induminian induminian (iii) hydrogen induminian (iiii) hydrogen indiminian (iiii) hydrogen indiation and reduction take place at the aution curve when both oxidiation and reduction take place at the aution curve when both oxidiation and reduction take place at the aution curve when both oxidiation and reduction take place at the aution curve when both oxidiation and reduction take place at the aution curve when both oxidiation and reduction take place at the ame curve suth (iii)	(i) magnetian (iii) atom magnetian (iii) atom magnetian (iii) box (iii) hydrogen (iii) hydrogen (iii) hydrogen (iii) hydrogen (iiii) hydrogen (iiiii) hydrochlorici (iiiii) anore reactive metals (iiii) maining Salts (iiii) hydrochlorici (iiii) hydrochlorici (iiii) anore reactive metals (iiii) anore reactive metals (iiii) anore reactive metals (iiii) maining (iiii) anore reactive metals	make (magnesium)	calcium		ation reaction takes place	pH Scale Neutral
Detection atominismination The general formula for this kind of reaction is as follows: and $\frac{1}{100}$ $\frac{1}{1$	Deck Curbon Curbon Each minimum is an intermination of the state in the	a (aluminium)	magnesium	and a salt and water are produced.		Acid
and and <tha< th=""><td>non-interaction national state state state 0 hydrogen in hydrogen sodium choride + water 0 hydrogen in hydrogen sodium choride + water 0 hydrogen in hydrogen sodium choride + water 0 hydrogen in in hydrogen sodium choride + water 0 hydrogen in in in hydrogen sodium choride + water 0 in hydrogen in hydrochioric colure sodium choride + water 0 in hydrochioric in hydrochioric in hydrochioric 0 in hydrochioric in hydrochioric in hydrochioric 0 metals hereal constring the metal in the metal sodium choride in hereal hild hereal 0 Metals with water, poduce a metal hydrovide and in the metal action hereal in hereal hereal</td><td></td><th>aluminium</th><td>The general formula for this kind of reaction is</td><td>as follows:</td><td>Weak V Weak</td></tha<>	non-interaction national state state state 0 hydrogen in hydrogen sodium choride + water 0 hydrogen in hydrogen sodium choride + water 0 hydrogen in hydrogen sodium choride + water 0 hydrogen in in hydrogen sodium choride + water 0 hydrogen in in in hydrogen sodium choride + water 0 in hydrogen in hydrochioric colure sodium choride + water 0 in hydrochioric in hydrochioric in hydrochioric 0 in hydrochioric in hydrochioric in hydrochioric 0 metals hereal constring the metal in the metal sodium choride in hereal hild hereal 0 Metals with water, poduce a metal hydrovide and in the metal action hereal in hereal		aluminium	The general formula for this kind of reaction is	as follows:	Weak V Weak
Image Image <t< th=""><td>Image: construction is a large table for metal strongen with the last reactive metal strongen with water strong of the table with the last reactive metal with displace a last reactive metal with water reactive metal with water reactive metal with water reactions, a more reactive metal with water reactions a more reaction and reduction take place at the place at the near reaction with water reaction with water reaction with water reaction with water reaction and reduction take place at the nearest with water reaction is a large of electrons. Point of the metal strongen and reduction take place at the sulfuric place at the sulfur</td><td>zebra (zinc)</td><th>zinc</th><td></td><td></td><td>3 4 5 6 7 8 9 10 11 12</td></t<>	Image: construction is a large table for metal strongen with the last reactive metal strongen with water strong of the table with the last reactive metal with displace a last reactive metal with water reactive metal with water reactive metal with water reactions, a more reactive metal with water reactions a more reaction and reduction take place at the place at the near reaction with water reaction with water reaction with water reaction with water reaction and reduction take place at the nearest with water reaction is a large of electrons. Point of the metal strongen and reduction take place at the sulfuric place at the sulfur	zebra (zinc)	zinc			3 4 5 6 7 8 9 10 11 12
time HCI + NaCH - MaCI + H_O hydrogen tead HCI + NaCH - MaCI + H_O hydrogen tead Naming Salts copper note Naming Salts note note Naming Salts platinum Naming Salts Acid Used Salt Produced note reaction teal carbonate, odde or hydroxide. Naming Salts Acid Used Salt Produced of the table with the least reactive nearth bottom note Naming Salts Naming Salts Naming Salts of the table with the least reactive nearth bottom note Naming Salts Naming Salts Acid Used Salt Produced of the table with Water acid that was used to make it. Acid Used salt Produced nitric chloride of the table with Water more reactive metals react with acids, they undergo a redox reaction. A redox Naming Salts Naming Salts Old Halls with Water more reaction curves when both oxidation and reduction take place at the salts Naming Salts Naming Salts Ubble table for mater Mater Mater Salts Naming Salts Naming Salts Old H + H3 Mater Mater	Induction Iter HaCl + HaO Induction Isolation HaCl + HaO Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induct	insane (iron)	iron	hydrochloric acid + sodium hydroxide 🕕 sodi	ium chloride + water	
hydrogen lead Naming Salts hydrogen coper gold in the metal carbonate, gold Maineg Salts resister reformeral carbonate, gold in the metal carbonate, hydrochloric hydrochloric chloride patnim patnim patnome in the metal carbonate, hydrochloric hydrochloric chloride point of the table with the least reactive metal point of the table with the least reactive metal will displace a los acid that was used to make it. Acid Used salt Produced point of the table with Water a more reactive metal will displace a los acid that was used to make it. Acid Used salt Produced point of the table with Water a more reactive metal will displace a los acid that was used to make it. a more reaction. A redox Platian Mem metals react with acids, they undergo a redox reaction. A redox a more reaction cours when both oxidation and reduction take place at the matter water, produce a metal hydrogen Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platian Platin Plat	hydrogen lead Marting Salts residen copper silver menting Salts residen restinct metal used actions from the transment mode or hydrochloric chloride of the table with the least resctive metal mode or hydrochloric chloride antirric of the table with the least resctive metal mode or hydrochloric chloride antirric chloride of the table with water, produce a metal hydrochloric chloride antirric nitric chloride of the table with water, produce a metal hydrochloric sulfuric sulfuric chloride Metals with water, produce a metal hydrochloric chloride sulfuric chloride Metals with Water mode of the trans corres from the isat sulfuric sulfuric chloride Metals with Nater metals resct with acids, they undergo a retox resction. A redox redox Reactions when both oxidation and reduction tale place at the sulfuric sulfuric nitric 210H + H ₂ metal produce a metal hydrogen chromes cond redox 210H + H ₂ metal produce a sult and hydrogen chromes redox redox 210H + H ₂ metal chromes chromes chromes	try (tin)	tin	HCl + NaOH NaCl + H2O		In aqueous solutions, acids produce H* ions and alkalis produce OH ⁻ ions.
copper silver The first part comes from the metal in the metal carbonate, point in the metal carbonate, metal in the metal carbonate, point of the table with the least reactive metal will displace a less of the table with the least reactive metal will displace a less of the table with the least reactive metal will displace a less of the table with Water Acid Used Sait Produced p of the table with the least reactive metal will displace a less of the table with Water mitric mitric sulfate p of the table with the least reactive metal will displace a less metions, a more reactive metal will displace a less metions. metals with Water sulfate nitric sulfate p of the table with Water metal with Water mitric sulfate nitric sulfate p of the table with Water metal with Water metals with Water sulfate nitric sulfate p of the table with water, produce a metal hydroxide + hydrogen metals reaction occurs when both oxidation and reduction take place at the sulfate water 2LiOH + Hy metals with Dilute Acid 2H + 2a - 4a 2H + 2a 2LiOH + Hy metals with Bases Metals with Bases Metals with Bases Metals with Dilute Acid 2H + 2a - 4B Metals oxide is used to make the choric acid + opher oxide - opher sulfate + water - 2NaCl + H_2 2H + 2a - 4B 2H + 4	coper silver comper silver The first part comes from the metal in the metal carbonate, point of the table with the least reactive metal acid that was used to make it. Acid Used Salt Produced rise is a league table for metals. The more reactive metal acid that was used to make it. For example. Initrate Initrate rise is a league table for metals. The more reactive metal acid that was used to make it. For example. For example. Initrate Initrate reacted with water. more reactive metal will displace a less with Water mitrate Initrate Initrate Initrate - lithium hydroxide + hydrogen metals reaction the suffuric suffuric suffuric plate 21:0H + H ₂ - Ithium hydroxide + hydrogen Herein cequation can be further split into two half equations. 21:0H + H ₂ Metals with Dilute Acid Seample: Ca ² + H ₂ The ionic equation can Metals with Dilute Acid Moroson Sol diation is gaining of electrons. Sol diation is gaining of electrons. Metals with bilitte Acid > 2NaCl + H ₂ Moroson here or all and a metal oxide is suffuric acid + copper oxide -> colson + H ₂ O Metals with bilitte Acid > 2NaCl + H ₂ Moroson here or all with acid + water Moroson here or all with acid +		lead	Naming Salts		Neutral solutions are pH7 and are neither acids or alkalis.
Silver Chloride Chloride Chloride Chloride Chloride Chloride Chloride Silver Silver Silver Silver Silver Silver Silver Silver Chloride Chloride Silver	 i) allower in the metal carbonate, induction in alloride platitium in the metal carbonate, induction in the metal carbonate, induction in the metal carbonate in the grade of the table with the least reactive metal will displace a lease of the table with the least reactive metal will displace a lease the induction is a more reactive metal will displace a lease the induction is a more reactive metal will displace a lease the induction is a more reactive metal will displace a lease with water is a more reactive metal will displace a lease with water reactive metal will displace a lease with water reactive metal will displace a lease the induction is a more reactive metal will displace a lease the reaction and reduction take place at the reacted with water produce a metal hydroxide and the lease the reaction. Puttime hydroxide + hydrogen in the reaction. Puttime and hydrogen in the reactivity series do not react with Bases of the the reaction is solide on treact with Bases of the the reaction is lease and for a salt and hydrogen in the reactivity series do not react with Bases of the treaction is lease and the reaction is lease and the reaction is lease and the reaction is a lease of the reaction is lease and the reaction is a lease of the reaction is lease and the reaction is a lease of the reaction is a lease of	how (hydrogen)	copper			For example, in neutralisation reactions, hydrogen ions from an acid
matrix pedator matrix matrix <thmatrix< th=""> matrix matrix</thmatrix<>	minimum minimum patimum minimum patimum minimum patimum minimum patimum minimum of the table with the least reactive meth and of the twas used to make it minimum of of the table with the least reactive meth and if data was used to make it minimum of of the table with the least reactive meth and if data was used to make it minimum of of the table with water, produce a metal will diplate at the metals with water, produce a metal will diplate at the metals with water, produce a metal will diplate at the metals with water, produce a metal will diplate at the metals with water, produce a metal will dissolve. minime metals with water and at with a saturated at with and dissolve. The init of the table with water, produce a salt and hydrogen. metals with water and at water and at with one will dissolve. minime will dissolve. The init of and a metal sit he faster the reaction. metals with a saturated at with water and at w	camels (copper)	silver			react with hydroxide ions from an alkali to produce water:
DationDationMaking Soluble satis suffice site $eries is a lagger table for metals. The more reactive metalsop of the table with the last reactive metal byor of the table with the last reactive metal byrections, a more reactive metal will displace a lastreaction with displace a lastreaction with water, produce a metal hydroxide + hydroxide andreaction with water, produce a metal hydroxide + hydroxide andreaction cours when both oxidation and reduction take place at thesufficie active metalsreaction cours when both oxidation and reduction take place at thesufficie active metalsreaction cours when both oxidation and reduction take place at thesufficie active cours when both oxidation and reduction take place at thesufficie active cours when both oxidation and reduction take place at thesufficie active cours when both oxidation and reduction take place at thesufficie active cours.Making Soluble saltsautuatedthe sufficie activethe sufficience activethe suf$	Dation Detain	surprise (silver)	gold			H* + OH ⁻ → H ₂ O
erice is a league table for metals. The more reactive metals In where a set in the least reactive metal will displace a league table with the least reactive metal will displace a league table with the least reactive metal will displace a league table with water, produce a metal hydroxide and for a metals react with acids, they undergo a redox reaction. A redox reaction. A redox reaction take place at the sufficience a metal hydroxide and reduction take place at the sufficience are table are table. In Nake a saturated solution by stirring solution by stirring solution by stirring the sufficience are table. <i>F</i> = lithium hydroxide + hydrogen In the ionic equation cours when both oxidation and reduction take place at the sufficience areaction. A redox reaction. A redox reaction. A redox reaction cours when both oxidation and reduction take place at the sufficience area table. In Nake a saturated place at the sufficience area table. <i>F</i> = lithium hydroxide + hydrogen In the ionic equation can be further split into two half equations. In all fills before an east of the saturated place at the sufficience. <i>F</i> = 100 + H ₂ . In the ionic equation can be further split into two half equations. In all fills over a Bunsen with actions. In all fills over a Bunsen with actions. <i>F</i> = 100 + H ₂ . In the ionic equation can be further split into two half equations. In all fills over a Bunsen with actions. In all fills over a Bunsen with actions. <i>F</i> = 100 + H ₂ . In the ionic equation can be further split into two half equations. In the ionic equation can be further split into two half equations. In all	erice is a lagge table for metals. The more reactive metaland more reactive metal with the least reactive metal with water.1. Also a saturated sequence is a saturated sequence of the reaction the least reaction. A reduction take place at the set interval metals reaction the value of the reaction. The reaction the value of the reaction. The reaction the value of the reaction. The reaction the reaction. The reaction the reaction. The reaction the reaction the reaction the reaction. The reaction the reaction the reaction the reaction. The reaction the reaction the reaction the reaction the reaction. The reaction the reaction the reaction the reaction the reaction. The reaction the reaction the reaction the reaction the reaction. The reaction there are reacted with addition and reacted with addition and reaction. The reaction the react	gorillas (gold)	platinum			Making Soluble Salts
op of the table with the least reactive near the bottom Per example, sourch concruits Solution by stirring	op of the table with the least reactive near the bottom op of the table with the least reactive near the bottom option by stirting from the least reactive near the point in the least reactive metal will displace a last reaction. Not reample: Not rea	The reactivity series is a league table for metals. The	more reactive metals	de la ciela		· Annually
reactions, a more reactive metal will displace a lest Redox Reactions (Higher Titer Only) copper oxide into copper oxide into reaction variety water, produce a metal hydroxide and Men metals react, with acids, they undergo a redux reaction. A redox reaction cours when both oxidation and reduction take place at the will disolve. 4. r =========== =========== ========= 3. Half fill a besker 4. r ======= ======= ======= 3. Half fill a besker 4. r ====== ====== ======= 3. Half fill a besker 4. r ====== ====== ====== 3. Half fill a besker 4. r ===== ===== ===== 3. Half fill a besker 4. r ===== ===== ===== 3. Half fill a besker 4. r ===== ===== ===== 3. Half fill a besker 4. r ==== ===== ===== 3. Half fill a besker 4. r ==== ===== ===== 3. Half fill a besker 4. r === ===== ===== 3. Half fill a besker 4. r === ===== ===== ===== 4. 4.	calcitors, a more reactive metal will displace a lesRedox Reactions (Higher Tier Only) When metals react with acids, they undergo a redox reaction. A redox When metals react with acids, they undergo a redox reaction. A redox When metals react with acids, they undergo a redox reaction. A redox When metals react with acids, they undergo a redox reaction. A redox When metals react with acids, they undergo a redox reaction. A redox with water. produce a metal hydroxide + hydrogen To more $210H + H_2$ Redox Reactions (Higher Tier Only) the suffic acid the suffic acid <td>are near the top of the table with the least reacti</td> <th>tive near the bottom.</th> <td></td> <td></td> <td></td>	are near the top of the table with the least reacti	tive near the bottom.			
Molen metals react with waterWhen metals react, with acids, they undergo a redox reaction. A redo reaction occurs when both oxidation and reduction take place at the reacted with water, produce a metal hydroxide and For example:When metals react, with acids, they undergo a redox reaction. A redo reaction occurs when both oxidation and reduction take place at the will dissolve.When metals reaction.A* The intrimum hydroxide + hydrogen $2H^+ + Ca \rightarrow Ca^2^+ + H_2$ $3. Half fill a basker4^-* ZIOH + H_22H^+ + Ca \rightarrow Ca^2^+ + H_23. Half fill a basker4^-* ZIOH + H_22H^+ + 2e^ h_22H^+ + 2e^ 4^-• ZUCH + H_22H^+ + 2e^ H_24^-• ZUCH + H_22H^+ + 2e^ H_24^-• ZUCH + H_22H^+ + 2e^ H_24^-• ZUCH + H_22H^- + 2e^ H_24^-• ZNACL + H_22H^- + 2e^ H_24^-• Coloring clicic as all and hydrogen.2H^+ + 2e^ H_2• Coloring clicic as odi excitors with Bases4^ 4^-• bolow hydrogen in the reactivity series do not react with4^-• bolow hydrogen in the reactivity series do not react with 4^-• bolow hydrogen in the reactivity series do not react - copere sulfate + water4^-• bolow hydrogen in the reactivity series do not react - cuSO$	Mean metals react with acids, they undergo a redox reaction. A redox When metals react with acids, they undergo a redox reaction. A redox When metals react with acids, they undergo a redox reaction. A redox Factals with Water reaction occurs when both oxidation and reduction take place at the statin mydroxide + hydrogen Mile submetals reacted with water, produce a metal hydroxide and Faction occurs when both oxidation and reduction take place at the state the reaction. Mile solve. 4. - UIDH + H ₂ 2H' + Ca - Ca ²⁺ + H ₂ 1. 1.	In chemical reactions, a more reactive metal v	will displace a less	Redox Reactions (Higher Tier Only)		
reaction occurs when both oxidation and reduction take place at the same time.until no more until no more will dissolve. $4.$ For example: The ionic equation can be further split into two half equations. $3.$ Half fill a beaker with water and set this over a Bunsen burner to heat the water. Place an evaporating dish on top of the beaker. $4.$ $2H^+ + 2e^ Ha3. Half fill a beakerwith water and setthis over a Bunsenburner to heat thewater. Place anevaporating dish ontop of the beaker.4.2H^+ + 2e^ Ha3. Half fill a beakerwith water and setthis over a Bunsenburner to heat thewater. Place anevaporating dish ontop of the beaker.4.2H^+ + 2e^ Ha3. Half fill a beakerwith water and setthis over a Bunsenburner to heat thewater. Place anevaporating dish ontop of the beaker.4.2H^+ + 2e^ Ha3. Half fill a beakerthis over a Bunsenburner to heat thewater. Place anevaporating dish ontop of the beaker.4.$	reaction occurs when both oxidation and reduction take place at the same time.until no more until no more will disolue. $4.$ For example: For example: The ionic equation can be further split into two half equations. The ionic equation can be further split into two half equations. The ionic equation can be further split into two half equations. $2H^+ + 2e^- \rightarrow H_2$ $4.$ Oxidation is loss of electrons. $2H^+ + 2e^- \rightarrow H_2$ $3.$ Half fill a beaker this over a Bunsen burner to heat the water. Place an evaporating dish on top of the beaker. $4.$ $2H^+ + 2e^- \rightarrow H_2$ $3.$ Half fill a beaker this over a Bunsen burner to heat the water. Place an evaporating dish on top of the beaker. $4.$ $2H^+ + 2e^- \rightarrow H_2$ $Beduction is gaining of electrons.the general formula for the reaction between an acid and a metal oxide isacid + metal oxide \rightarrow sulf + waterthe remainingliquid into acrystallising dishand leave to cool6.$			When metals react with acids, they undergo a	a redox reaction. A redox	
same time.example:For example:For example:For example:For example:The ionic equation can be further split into two half equations. a. Half fill a beaker The ionic equation can be further split into two half equations. a. Half fill a beaker Ca \rightarrow Ca ²⁺ + 2e ⁻ Half fill a beakerDividation is loss of electrons. b. Half fill a beaker Dividation is loss of electrons. b. Half fill a beaker Dividation is loss of electrons. b. Half fill a beaker Dividation is loss of electrons. b. Half fill a beaker Dividation is loss of electrons. b. Half fill a beaker Dividation is loss of electrons. b. Half fill a beaker Dividation is loss of electrons. b. Coce coled , pourDividation is againing of electrons. b. Once coled , pourReduction is gaining of electrons. b. Once coled , pourReduction is gaining of electrons. b. Once coled , pourReduction is gaining of electrons. b. Once coled , pourHe general formula for the reaction between an acid and a metal oxide is b. Once coled , pourHe general formula for the reaction between an acid and a metal oxide is b. Once coled , pourHe general formula for the reaction between an acid and a metal oxide is b. Once coled , pourHe general formula for the reaction between an acid and a metal oxide is b. Once coled , pourHe general formula for the reaction between an acid and a metal oxide is b. Once coled , pourHe general formula for the reaction between an acid and a metal oxide is b. O	same time.For example:For example:For example:For example: $2H' + Ca \rightarrow Ca^2 + H_2$ The ionic equation can be further split into two half equations.The ionic equation can be further split into two half equations.Ca $\rightarrow Ca^2 + 2e^-$ Oxidation is loss of electrons. $2H' + 2e^- \rightarrow H_2$ Determet to heat the water. Place an evaporating dish on evaporating dish on top of the beaker.Reduction is gaining of electrons.The general formula for the reaction between an acid and a metal oxide \rightarrow salt + waterThe general formula for the reaction between an acid and a metal oxide \rightarrow salt + waterSuffuric acid + copper oxide \rightarrow salt + waterUffuric acid + copper oxide \rightarrow salt + waterUffuric acid + copper sulfate + waterUffuric ac	Reactions of Metals with Water		reaction occurs when both oxidation and red	luction take place at the	下して
For example: $2H' + Ca - Ca^{2*} + H_2$ The ionic equation can be further split into two half equations. The ionic equation can be further split into two half equations. The ionic equation can be further split into two half equations. $Ca - Ca^{2*} + 2e^{-}$ Oxidation is loss of electrons. $2H' + 2e^{-} - H_2$ $2H' + 2e^{-} - H_2$ $2H' + 2e^{-} - H_2$ Reduction is gaining of electrons. $2H' + 2e^{-} - H_2$ Reduction is gaining of electrons. The general formula for the reaction between an acid and a metal oxide is on to of the beaker. The general formula for the reaction between an acid and a metal oxide is used in the remaining liquid into a cid + metal oxide - copper sulfate + water is uffuric acid + copper oxide - copper sulfate + water is und leave to cool for the reaction between an acid and a metal oxide is on the remaining liquid into a cid + copper oxide - copper sulfate + water is und leave to cool for the reaction between an acid and a metal oxide is on the remaining liquid into a cid + copper oxide - copper sulfate + water is und leave to cool for the remaining liquid into a cid + beaker. H ₂ SO ₄ + CuO - CuSO ₄ + H ₂ O	For example: $2H' + Ca \rightarrow Ca^{2^{+}} + H_{2}$ The ionic equation can be further split into two half equations. The ionic equation can be further split into two half equations. The ionic equation can be further split into two half equations. $Ca \rightarrow Ca^{2^{+}} + 2e^{-}$ Oxidation is loss of electrons. $2H' + 2e^{-} \rightarrow H_{2}$ $2H' + 2e^{-} \rightarrow H_{2}$ Reduction is gaining of electrons. $H' + 2e^{-} \rightarrow H_{2}$ Reduction is gaining of electrons. $Reduction is gaining of electrons.Reduction is gaining of electrons.$	Metals when reacted with water produce a m	netal hvdroxide and	same time.		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 2H^{+} + Ca^{-} - Ca^{2^{+}} + H_{2} \\ \text{The ionic equation can be further split into two half equations.} \\ \text{The ionic equation can be further split into two half equations.} \\ \text{The ionic equation can be further split into two half equations.} \\ \text{Ca} - Ca^{2^{+}} + 2e^{-} \\ \text{Oxidation is loss of electrons.} \\ \text{Oxidation is loss of electrons.} \\ \text{Ca} - Ca^{2^{+}} + 2e^{-} \\ \text{Oxidation is loss of electrons.} \\ \text{Ca} - Ca^{2^{+}} + 2e^{-} \\ \text{Oxidation is loss of electrons.} \\ \text{Ca} - Ca^{2^{+}} + 2e^{-} \\ \text{Ca} - Ha^{2^{+}} \\ \text{Ca} - Ha^{2^{+}} \\ \text{Reduction is gaining of electrons.} \\ $	hvdrogen.	min minante mina	For example:		Wut alsoive.
The ionic equation can be further split into two half equations. The ionic equation can be further split into two half equations. Ca \rightarrow Ca ²⁺ + 2e ⁻ Oxidation is loss of electrons. $2H^{+} + 2e^{-} \rightarrow H_{2}$ Reduction is gaining of electrons. $H_{2}SO_{4} + CuO \rightarrow CuSO_{4} + H_{2}O$ $H_{2}SO_{4} + CuO \rightarrow CuSO_{4} + H_{2}O$ $H_{2}SO_{4} + CuO \rightarrow CuSO_{4} + H_{2}O$	The ionic equation can be further split into two half equations. The ionic equation can be further split into two half equations. Ca $- ca^{2^{+}} + 2e^{-}$ Oxidation is loss of electrons. $2H^{+} + 2e^{-} \rightarrow H_{2}$ Reduction is gaining of electrons. Reduction is gaining of electrons. Reduction is gaining of electrons. The general formula for the reaction between an acid and a metal oxide is: regorating dish on to poly the beaker. The general formula for the reaction between an acid and a metal oxide is: regorating dish on to poly the beaker. Factions with Bases The general formula for the reaction between an acid and a metal oxide is: right into a crystallising dish and leave to cool for 24 hours.					Half fill a beaker
The total equation can be further split into two nair equations. Ca \rightarrow Ca ²⁺ + 2e ⁻ Oxidation is loss of electrons. $2H^{+} + 2e^{-} \rightarrow H^{2}$ Reduction is gaining of electrons. $H^{+} = - H^{2}$ Reduction is gaining of electrons. Reduction is gaining of electrons. Reduction is gaining of electrons. Reactions with Bases The general formula for the reaction between an acid and a metal oxide is: Reactions with Bases The general formula for the reaction between an acid and a metal oxide is: Reactions with Bases Reactions with Reactions with React	The total equations can be further split into two nait equations. Ca \rightarrow Ca ²⁺ + 2e ⁻ Dividiation is loss of electrons. 2H ⁺ + 2e ⁻ \rightarrow H2 2H ⁺ + 2e ⁻ \rightarrow H2 Reduction is gaining of electrons. Reduction is gaining of the beaker. Prove colled, pour the remaining liquid into a crystallising dish and leave to cool for 24 hours.	lithium + water 🛶 lithium hydroxide + hydrogen			1-15	with water and set
$\begin{aligned} \mathbf{Ca} \to \mathbf{Ca}^{2^2} + 2e^- \\ \text{Oxidation is loss of electrons.} \\ \text{Oxidation is loss of electrons.} \\ \text{2H}^+ 2e^- \to H_2 \\ \text{Reduction is gaining of electrons.} \\ \text{Reduction is gaining of electrons.} \\ \text{Reduction is gaining of electrons.} \\ \text{Reduction signing dish} \\ \text{acid + metal oxide } \bullet \text{ copper sulfate + water} \\ \text{sulfuric acid + copper oxide } \bullet \text{ copper sulfate + water} \\ \text{sulfuric acid + copper oxide } \bullet \text{ cosol} \\ \text{liquid into a cool} \\ \text{for 24 hours.} \\ \end{array} $	$\begin{aligned} ca \rightarrow Ca^{2^{2}} + 2e^{-} & \\ Divide tion is loss of electrons. \\ 2H' + 2e^{-} \rightarrow H^{2} & \\ 2H' + 2e^{-} \rightarrow H^{2} & \\ Reduction is gaining of electrons. \\ Reduction is gaining of electrons. \\ Reduction is gaining of electrons. \\ Reduction between an acid and a metal oxide is: top of the beaker. \\ The general formula for the reaction between an acid and a metal oxide is: top of the beaker. \\ The general formula for the reaction between an acid and a metal oxide is: top of the beaker. \\ Sola + metal oxide \rightarrow salt + water \\ ucid + metal oxide \rightarrow sulfate + water \\ H_2SO_4 + CuO \rightarrow CuSO_4 + H_2O & \\ H_2SO_4 + CuO \rightarrow CuSO_4 + H_2O & \\ for 24 hours. \end{aligned}$	2Li + 2H ₂ O - 2LiOH + H ₂		The Johns equation can be further split into two	o half equations.	C.M
Oxidation is loss of electrons. water. Place an water is an water provide in the peaker. water. Place an water. Place an water. Place an water. Place an evaluation of the beaker. Reduction is gaining of electrons. Reduction is gaining of electrons. to p of the beaker. Reactions with Bases The general formula for the reaction between an acid and a metal oxide is used and a metal oxide is used to mater. to p of the beaker. Place to be cusols, + H₂O Luo → cusOs, + H₂O the remaining liquid into a crystallising dish and leave to cool for 24 hours.	Oxidation is loss of electrons. 2H ⁺ + 2e ⁻ → H ² 2H ⁺ + 2e ⁻ → H ² water. Place an water. Place an evaporating dish on the beaker. Reduction is gaining of electrons. For of the beaker. Reactions with Bases 5. Once cooled, pour action between an acid and a metal oxide is: the remaining liquid into a sulfuric acid + copper oxide → solt + water 6. H ₂ SO ₄ + CuO → CuSO ₄ + H ₂ O 6. 6.	The more reactive a metal is, the faster the reaction	÷	Ca→► Ca ²⁺ + 2e ⁻		E
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Reactions of Metals with Dilute Acid		Oxidation is loss of electrons.		
Reduction is gaining of electrons.top of the beaker.Reactions with Basestop of the beaker.The general formula for the reaction between an acid and a metal oxide is acid + metal oxide \rightarrow salt + water5. Once cooled, pour the remaining liquid into a crystallising dish and leave to cool6.	Reduction is gaining of electrons. Reactions with Bases The general formula for the reaction between an acid and a metal oxide is: The general formula for the reaction between an acid and a metal oxide is: The general formula for the reaction between an acid and a metal oxide is: The general formula for the remaining the remaining liquid into a crystallisting dish $H_2SO_4 + CuO - CuSO_4 + H_2O$ for 24 hours.	Metals, when reacted with acids, produce a salt and	d hydrogen.	2H* + 2e ⁻		1
Reactions with Bases The general formula for the reaction between an acid and a metal oxide is: The general formula for the reaction between an acid and a metal oxide is: The general formula for the reaction between an acid and a metal oxide is: the remaining the remaining into a sulfuric acid + copper oxide \rightarrow copper sulfate + water H ₂ SO ₄ + CuO \rightarrow CuSO ₄ + H ₂ O H ₂ SO ₄ + CuO \rightarrow CuSO ₄ + H ₂ O for 24 hours.	Reactions with Bases The general formula for the reaction between an acid and a metal oxide is: The general formula for the reaction between an acid and a metal oxide is: the remaining the remaining is: the remaining is: $h_{2}SO_{4} + CuO \longrightarrow CuSO_{4} + H_{2}O$ $H_{2}SO_{4} + CuO \longrightarrow CuSO_{4} + H_{2}O$ for 24 hours.	Sodium + hydrochloric acid	 hydrogen 	Reduction is gaining of electrons.		
The general formula for the reaction between an acid and a metal oxide is: acid + metal oxide \rightarrow salt + water sulfuric acid + copper oxide \rightarrow copper sulfate + water $H_2SO_4 + CuO \rightarrow CuSO_4 + H_2O$ and leave to cool for 24 hours.	The general formula for the reaction between an acid and a metal oxide is: acid + metal oxide \rightarrow salt + water sulfuric acid + copper oxide \rightarrow copper sulfate + water H ₂ SO ₄ + CuO \rightarrow CuSO ₄ + H ₂ O H ₂ SO ₄ + CuO \rightarrow CuSO ₄ + H ₂ O for 24 hours.	ZNa + ZHCI - ZNaCI + Hz	2	Reactions with Bases		
acid + metal oxide \rightarrow salt + water sulfuric acid + copper oxide \rightarrow copper sulfate + water H ₂ SO ₄ + CuO \rightarrow CuSO ₄ + H ₂ O for 24 hours.	acid + metal oxide \rightarrow salt + water sulfuric acid + copper oxide \rightarrow copper sulfate + water H ₂ SO ₄ + CuO \rightarrow CuSO ₄ + H ₂ O for 24 hours.	Metals that are below hydrogen in the reactivity seri	ries do not react with	The general formula for the reaction between an	acid and a metal oxide is:	0
sulfuric acid + copper oxide \rightarrow copper sulfate + water H ₂ SO ₄ + CuO \rightarrow CuSO ₄ + H ₂ O and leave to cool for 24 hours.	sulfuric acid + copper oxide \rightarrow copper sulfate + water H ₂ SO ₄ + CuO \rightarrow CuSO ₄ + H ₂ O and leave to cool for 24 hours.	dilute acids.				
crystauising aisn and leave to cool for 24 hours.	crystauising aisn and leave to cool for 24 hours.			sulfuric acid + copper oxide	+ water)
-				H ₂ SO ₄ + CuO - CuSO ₄ + H ₂ O		
						-

The Test for Hydrogen Place a burning splint at the opening of a test tube. If hydrogen gas is present, it will burn rapidly with a squeaky-pop sound.	The Test for Oxygen Place a glowing splint inside a test tube. The splint will relight in the presence of oxygen.	The Test for Carbon Dioxide Calcium hydroxide (lime water) is used to test for the presence of carbon dioxide. When carbon dioxide is bubbled through or shaken with limewater, the limewater turns cloudy.	The Test for Chlorine Damp litmus paper is used to test for chlorine gas. The litmus paper becomes bleached and turns white.
Step 1 – Using a ruler, measure 1cm from the bottom of the chromatography paper and mark with a small dot using a pencil. Rule a line across the bottom of the chromatography paper with a pencil, going through the dot you have just made. Step 2 – Using a pipette, drop small spots of each of the inks onto the pencil line. Leave a sufficient gap between each ink spot so that they do not merge.		 Step 6 - Once the chromatogram has dried, measure the distance travelled by the solvent. Step 7 - Measure the distance travelled by each ink spot. Step 8 - Calculate the R, value. Compare the R, values for each of the spots of ink. Limewater 	$R_{f} = \frac{\text{distance travelled by substance}}{\text{distance travelled by solvent}}$ The Test for Chlorine Damp litmus paper is used to test becomes bleached and turns white.

Identification of the Common Gases

Required Practical - Paper Chromatography

5
a
2
=
ž
S
Č.
-
-
2
S
Ô
\approx
11
.=
Q
0
-
~
÷
2.
C
5
a
2
C

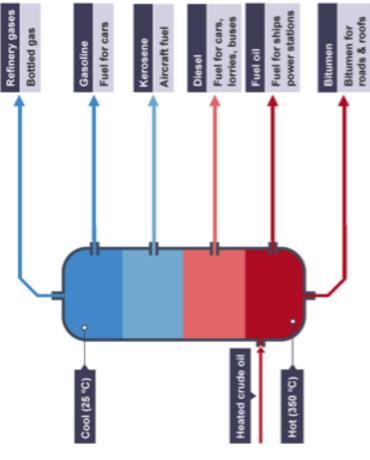
1. Keywords	
Finite resources	Resources that will run out
Renewable resources	Resources that can be re-grown or will not run out
Sustainable development	Building things with depleting natural resources
Potable water	Water that is safe to drink
Pure water	Water without anything added to it Eg 100% H_2O
Desalination	Removing salt by distillation or reverse osmosis
Sterilisation	Killing bacteria and microbes (eg chlorine, ozone or UV)
Distillation	Evaporation followed by condensation, uses a lot of energy
Reverse osmosis	A process using membranes to remove the salt. Uses a lot of energy
Effluent	Liquid waste sewage discharged into rivers and seas
Sludge	Solid sewage waste. Dried and used as fertiliser or burned to generate electricity
Life cycle assessments (LCAs)	A way of assessing the impact of the production transport use and disposal of a product on the environment

2. W	2. Waster water treatment	
	Name	Description
	Screening	Solid waste and grit removed by a metal grid
2	Primary treatment	Sediments are allowed to settle out from the mixture
3	Secondary treatment	Bacteria feed on the remaining organic waste. The tank has air bubbled through it so aerobic respiration can occur
4	Final treatment	Bacteria allowed to settle out. Water is sterilised and ready to drink

5. Alternative	meino	s. Alternative methods of extracting metals (HI ONLT)
hytomining	- · c	Plants absorb metal compounds

Phytomining	1.	Plants absorb metal compounds
	5	Plants are harvested and burnt
	з.	Ash contains metal compounds
Bioleaching	-	Bacteria absorb metal compounds
	2.	Bacteria excrete a solution of metal called
		Leachate
	3.	Electrolysis can extract the metal

4. Corrosion and its prevention (TRIPLE ONLY)	Destruction of materials by chemical reactions. eg rusting	cs by Examples	Providing a barrier Painting Electroplating	Reacts with the oxygen instead of Galvanising by the metal
nd its pre	Destrue	Works by	Providi	Reacts wit the metal
4. Corrosion a	Corrosion	Prevention method	Coating	Sacrificial protection


Chemistry Topic 7: Organic chemistry

1. Carbon compour	 Carbon compounds as fuels and feedstock
Hydrocarbon	A chemical made of only carbon and hydrogen
Crude oil	A mixture of hydrocarbons found in rock
Alkanes	Saturated hydrocarbons (without double bond)
Alkene	Unsaturated hydrocarbon (with double bond). They turn bromine water from brown to colourless.
Fractional distillation	A process of separating crude oil using the different boiling points of fractions
Viscosity	How thick a liquid is
Flammability	How easily a fraction catches fire
Boiling point	The temperature at which a substance turns from a liquid to a gas
Combustion	A reaction where a fuel is oxidised releasing heat energy
Cracking	Breaking less useful long-chain alkanes into useful short-chain alkanes and alkenes

	a Displayed formula	нн	нн Нн Н Н Н	н	н
C _n H _{2n+2}	Molecular formula	CH₄	C₂H ₆	C ₃ H ₈	C4H10
2. Alkanes General formula	Name	Methane	Ethane	Propane	Butane

3. Frac	3. Fractional distillation	Properties of hydrocarbons	
1.	The column is cooler at the top than the bottom	Property	Change as carbon change g Ionger
2.	The crude oil is heated	Boiling point	Increases
ю	The fractions evaporate and rise up the column	Viscosity	Increases (less runny)
4	The fractions condense at different points according to their boiling point	Flammability	Decreases
5	The liquid fractions run off and are collected	5. Cracking	
	Bofinen nate	Type of cracking	Conditions

gets

Very hot (850°C) + Steam Long chain = undesirable

Short chain = desirable

Hot (500°C) + catalyst

Catalytic

Steam

Electricity – Foundation and Higher

Required Practical

Investigating Resistance in a Wire

Independent variable: length of the wire.

Dependent variable: resistance.

Control variables: type of metal, diameter of the wire.

Conclusion: As the length of the wire increases, the resistance of the wire also increases.

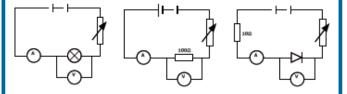
Investigating Series and Parallel Circuits with Resistors

Independent variable: circuit type (series, parallel).

Dependent variable: resistance.

Control variables: number of resistors, type of power source.

Conclusion: Adding resistors in series increases the total resistance of the circuit. In a parallel circuit, the more resistors you add, the smaller the resistance.


Investigating I-V Relationships in Circuits (Using a filament bulb, ohmic conductor, diode.)

Independent variable: potential difference/volts (V).

Dependent variable: current (A).

Control variable: number of components (e.g. 1 filament bulb, 1 resistor), type of power source.

Set up the circuits as shown below and measure the current and the potential difference.

Draw graphs of the results once collected.

Equations	
Charge:	Q = It
Potential difference:	V = IR
Energy transferred:	E = Pt
Energy transferred:	E = QV
Power:	P = VI
Power:	$P = I^2 R$

Equations and Maths

Maths 1kW = 1000W

0.5kW = 500W

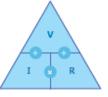
Charge

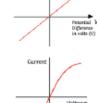
Electric current is the flow of electric charge. It only flows when the circuit is complete.

The charge is the current flowing past a point in a given time. Charge is measured in coulombs (C).

Calculating Charge charge flow (C) =

current (A) × time (s) $\Omega = It$


potential difference = current × resistance $V (V) = I (A) × R (\Omega)$

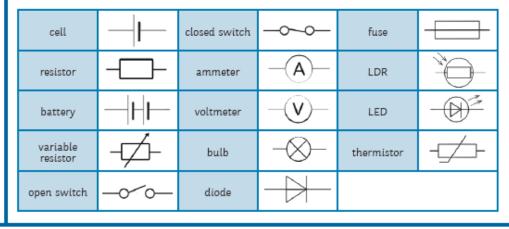


voltage (V) = current (A) × resistance (Ω) V = IR

Graphs of I-V Characteristics for Components in a Circuit

 Ohmic conductor: the current is directly proportional to the potential difference - it is a straight line (at a constant temperature).

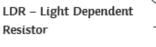
Petertio


Guvent I

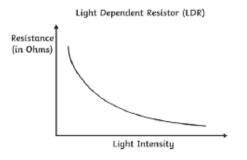
- Filament lamp: as the current increases, so does the temperature. This makes it harder for the current to flow. The graph becomes less steep.
- Diode: current only flows in one direction. The resistance is very high in the other direction which means no current can flow.

Current and Circuit Symbols

Current: the flow of electrical charge.


Potential difference (voltage): the push of electrical charge. Resistance: slows down the flow of electricity.

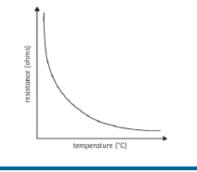
Physics


Electricity - Foundation and Higher

Circuit Devices

An LDR is dependent on light intensity. In bright light the resistance falls and at night the resistance is higher.

Uses of LDRs: outdoor night lights, burglar detectors.

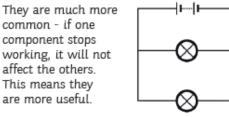


Thermistor

A thermistor is a temperature dependent resistor. If it is hot, then the resistance is less. If it becomes cold, then the resistance increases.

Uses of thermistors: temperature detectors.

Series and Parallel Circuits Series Circuits


Once one of the components is broken then all the components will stop working.

Potential difference – the total p.d. of the supply is shared between all the components. $V_{total} = V_1 + V_2$

Current - wherever the ammeter is placed in a series circuit the reading is the same. $I_1 = I_2 = I_3$

Resistance - In a series circuit, the resistance will add up to make the total resistance. $R_{total} = R_1 + R_2$

Parallel Circuits

Potential Difference - this is the same for all components.

 $V_{1} = V_{2}$

Current - the total current is the total of all the currents through all the components. $I_{total} = I_1 + I_2 + I_3$

Resistance - adding resistance reduces the total resistance.

Electricity in the Home

AC – alternating current. Constantly changing direction - UK mains supply is 230V and has a frequency of 50 hertz (Hz).

DC - direct current. Supplied by batteries and only flows in one direction

Cables - most have three wires: live, neutral and earth. They are covered in plastic insulation for safety.

Live wire - provides the potential difference from the mains.

Neutral wire – completes the circuit.

Earth wire - protection. Stops the appliance from becoming live. Carries a current if there is a fault. Touching the live wire can cause the current to flow through your body. This causes an electric shock.

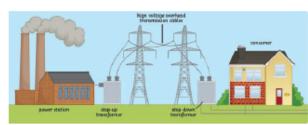
Energy Transferred - this depends on how long the appliance is on for and its power.

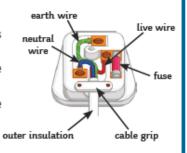
energy transferred (J) = power (W) × time (s) E = Pt

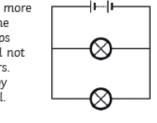
Energy is transferred around a circuit when the charge moves.

energy transferred (J) = charge flow (C) × potential difference (V) E = QV

power (W) = potential difference (V) × current (A) P = VI

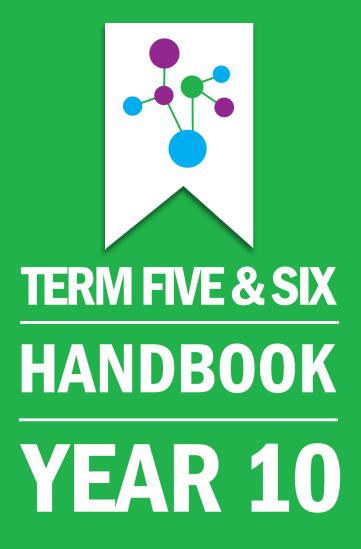

power (W) = current² (A) × resistance (Ω) $P = I^2 R$


The National Grid


The National Grid is a system of cables and transformers. They transfer electrical power from the power station to where it is needed. Power stations are able to change the amount of electricity that is produced to meet the demands. For example, more energy may be needed in the evenings when people come home from work or school. Electricity is transferred at a low current, but a high voltage so less energy is being lost as it travels through the cables.

Step-up transformers - increase the voltage as the electricity flows through the cables.

Step-down transformers - decrease the potential difference to make it safe.



Physics

PLYMPTON ACADEMY

