

7.2 The Motor Effect

Question Paper

Course	AQA GCSE Physics
Section	7. Magnetism & Electromagnetism
Торіс	7.2 The Motor Effect
Difficulty	Medium

Time allowed:	50
Score:	/39
Percentage:	/100

Question la

Figure 1 below shows a straight current carrying wire. The current is coming out of the page.

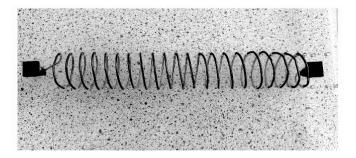
Figure 1

• Complete **Figure 1** to show the pattern of magnetic field lines around the wire. [2 marks]

[2 marks]

Question 1b

(a)


(b) How would the pattern change if the direction of the current was reversed?

[1 mark]

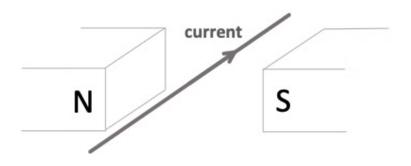
[1 mark]

Question 1c

(c) The picture below shows a long coil of wire called a solenoid.

When a current passes through the solenoid it produces a magnetic field.

Suggest three changes that would increase the strength of the magnetic field.


[3 marks]

[3 marks]

Question 2a

Figure 2 below shows a straight wire passing between the poles of two magnets.

When a current passes through the wire a force is exerted on the wire.

(a) What is the name given to this effect?

[1 mark]

[1mark]

Question 2b

(b) Describe how the direction of the force can be determined using Fleming's Left-Hand Rule.

[4 marks]

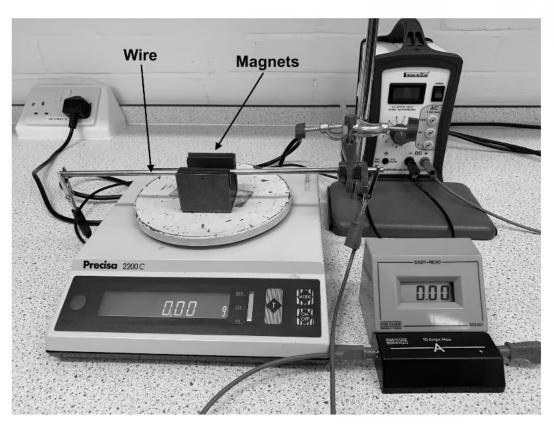
Question 2c

(c)	Add an arrow to Figure 2 , showing the direction of the force.	[1 mark]
		[1 mark]
Questic	on 2d	
(d)	Explain why this force acts on the wire.	[3 marks]

[3 marks]

Question 2e

(e) Suggest three changes that would **increase** the force acting on the wire.


[3 marks]

[3 marks]

Question 3a

The apparatus shown in **Figure 3** below can be used to measure the force acting on a current-carrying wire placed in a magnetic field.

Figure 3

The balance is initially zeroed so that when the power supply is off, it shows no reading. When the power supply is turned on, the balance shows a reading. As the current is increased, the reading increases.

(a) Explain in terms of forces why the reading increases.

[4 marks]

[4 marks]

Page 6 of 10

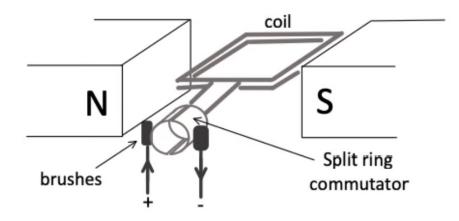
Question 3b

(b) For the above apparatus, when the current in the wire was 0.25 A, a force of 1.96 mN was exerted on the wire

The length of wire between the poles of the magnet was 0.042 m

Calculate the magnetic flux density between the poles of the magnet.

Give your answer to 2 significant figures.


(You may need to look up the appropriate formula on the Physics Equations Sheet).

[4 marks]

Question 4a

Figure 4 below shows a simple d.c. motor.

When a direct current is supplied to the coil, the coil starts to spin.

(a) Explain why.

[4 marks]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 4b

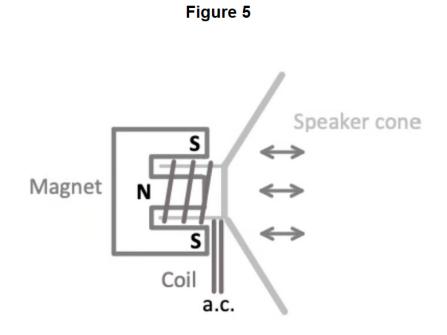
(b) Describe three changes that would make the coil spin faster.

[3 marks]

[3 marks]

Question 4c

(c) Describe two changes that could **reverse** the direction of the coil.


[2 marks]

[2 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 5

Figure 5 below shows a loudspeaker.

The loudspeaker produces a sound when an alternating current is connected to the coil. Explain why.

[4 marks]