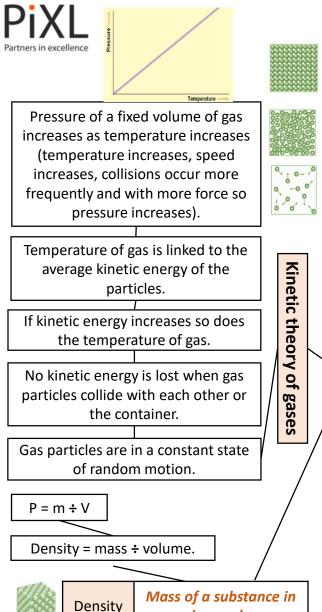


PixL

F

Name
Physics teacher


GCSE Physics

Trilogy Foundation Tier

Knowledge revision booklet

You ned to MEMORISE all of this information

- 1. Particle model of matter
- 2. Energy part 1
- 3. Energy part 2
- 4. Electricity
- 5. Forces part 1
- 6. Forces part 2
- 7. Atomic structure
- 8. Magnetism and Electromagnetism
- 9. Waves

Sublimation

Conservation

of mass

Physical

change

Solid turns directly into a gas.

Internal energy increases.

When substances change

state, mass is conserved.

No new substance is made,

process can be reversed.

State	Particle arrangement	Properties
Solid	Packed in a regular structure. Strong forces hold in place so cannot move.	Difficult to change shape.
Liquid	Close together, forces keep contact but can move about.	Can change shape but difficult to compress.
Gas	Separated by large distances. Weak forces so constantly randomly moving.	Can expand to fill a space, easy to compress.

Pressure

AQA

PARTICLE MODEL

OF MATTER

	Units			
Density	Kilograms per metre cubed (kg/m³)			
Mass	Kilograms (kg)			
Volume	Metres cubed (m³)			
Energy needed	Joules (J)			
Specific latent heat	Joule per kilogram (J/kg)			
Change in thermal energy	Joules (J)			
Specific heat capacity	Joule per kilogram degrees Celsius (J/kg°C)			
Temperature change	Degrees Celsius (°C)			
Pressure	Pascals (Pa)			

PHYSICS ONLY: when you do work the temperature increases e.g. pump air quickly into a ball, the air gets hot because as the piston in the pump moves the particles bounce off increasing kinetic energy, which causes a temperature rise.

Reducing the volume of a fixed mass of gas increases the pressure.

Halving the volume doubles the pressure.

Specific Heat Capacity Energy needed to raise 1kg of substance by 1°C Depends on:

Energy stored

- · Mass of substance
- What the substance is
- Energy put into the system.

Change in thermal energy = mass

X specific heat capacity X

temperature change.

 $\Delta E = m \mathbf{X} \mathbf{c} \mathbf{X} \Delta \theta$

Internal energy is the total kinetic and potential

Specific Latent
Heat
Specific Latent
Heat of Fusion
Specific Latent
Specific Latent
Heat of Fusion
Specific Latent
Specific Latent
Heat of Fusion
Specific Latent

Liquid

Particle model

Solid

Specific Latent Heat	Energy needed to change 1kg of a substance's state					
Specific Latent Heat of Fusion	Energy needed to change 1kg of solid into 1 kg of liquid at the same temperature					
Specific Latent Heat of Vaporisation	Energy needed to change 1kg of liquid into 1 kg of gas at the same temperature					

inside a energy of all the particles (atoms and system by Internal energy molecules) in a system. particles Heating causes a change in state. As particles Heating changes the separate, potential energy stored increases. energy stored Heating increases the temperature of a system. within a Particles move faster so kinetic energy of system particles increases.

Energy needed = mass **X** specific latent heat.

 $\Delta E = m X L$

PiX		Mechanical	Force acts u	pon an obj	ject	ys	Cha	ange in	thermal energy =	mass X sp	ecific heat	capacity X tempe	rature change
Partners in excell	lence	Electrical	Electric cu	ırrent flow	/	Energy	Speci	fic	Energy needed	Depend	ls on: mass	of substance,	HIGHE
		Heat	Temperature differe	ence betw	een objects	En	Hea	t	to raise 1kg of	what th	e substanc	ce is and	increas
		Radiation	Electromagnetic	c waves or	sound		Capad	city 5	ubstance by 1°C	energy	put into th	e system.	Effi
Kinet ener		Energy store moving of	•	½ X m	nass X (speed ½ mv²)2					Servered	November (1)	Efficiency =
Elast Poten ener	itial	Energy store stretched s elastic be	pring,		onstant X (extension) ² ½ ke ² portionality has not been exceeded		cceeded)	627	Energ store:				Effic
Gravitat Poten ener	ntial	Energy gair an object r above the g	aised (Nass)	〈 gravitatio	ional field strength X hei mgh		nt		and change	es	Dissipation		
Syste	em	An obje	ct or group of objects interact together	that	EG: Kettle b	oiling wate	r.		AQA		and Dis	-A	
Energy	ergy stores Kinetic, chemical, internal (thermal), gravitational potential, elastic potential, magnetic, electrostatic, nuclear							25%					
trans	transfer are ways to tra		d, electricity, thermal, to transfer from one s other store of energy.	one store to transfers		al energy emical ene al energy to		Clos	em total energ	gy in	Conservation	Principle o	Ot energ
Uni	it		Joules (J)	oules (J)		water up.		-	system			conservation of energy	always st
Work	tran: from	oing work sfers energy one store to another	By applying a force to move an object the energy	Work de	one = Force X W = F		oved	Op syst			Energy		the sam
		he rate of	store is changed. 1 Joule of energy	Powe	er = energy tr P = E ÷		ne					Energy (KE,	
Power		rgy transfer	per second = 1 watt of power	Po	wer = work d	one ÷ time,			Thermal energy (90%)			Velo	
			watt or power		P = W -	÷t			_ /			Spring c	
			Units		Useful		transfe]/			Exter	
Speci	fic Heat	Capacity	Joules per Kilogram	_	energy		nd used		4			Gravitational	
		e change	Celsius (J/Kg° Degrees Celsius		Wasted energy	-	ated end less use					Gravitational :	
-	•		Joules (J)	1 4	-	•			-			1101	Diff
Work done		Joures (J)		1									

Newton (N)

Metre (m)

Watts (W)

Seconds (s)

Force

Distance moved

Power

Time

HIGHER: efficiency can be increased using machines.

> Efficiency = <u>Useful power output</u> Total power input

 $\Delta E = m \mathbf{X} \mathbf{c} \mathbf{X} \Delta \theta$

Efficiency = <u>Useful output energy transfer</u> Total input energy transfer

Efficiency

How much energy is usefully transferred

PiXL

The amount of energy always stays the same.

Energy cannot be created or destroyed, only changed from one store to another.

	Units
Energy (KE, EPE, GPE, thermal)	Joules (J)
Velocity	Metres per second (m/s)
Spring constant	Newton per metre (N/m)
Extension	Metres (m)
Mass	Kilogram (Kg)
Gravitational field strength	Newton per kilogram (N/Kg)
Height	Metres (m)

Partners in excellence	Transport	Petrol, diesel, produced fi	rom oil	Used in cars trains and plan	es.				understand the principle ke steam to drive a turb	-	-	Science
Using renewable energy will need to increase to meet demand.	Heating	Gas and ele Most gener fossil fu	ated by	Used in buildin Used to power most devices	er	Power station	Generates electricity	r∈	el burnt eleasing mal energy into steam	Steam turns turbine	Turbine turns generator	Generator induces voltage
					National Grid	Transports electricity across UK	Pow	ver station Step-up transformer	Pylons	Step-down transformer	House, factory	
Non-renewable energy resource	I tinite reserve. It cannot be I oil and gas) and nuclear II		Usi	Global			AQA ENERGY –	National Property Assets				
Renewable energy resource	is an infinit	ver run out. It e reserve. It plenished.	Wind, Ge	Tides, Waves, othermal, Hydroelectric	1	Energy esources	Resource	S	part 2	Grid	7	A
Energy resource	How it works Uses			Positive		Negative						
Fossil Fuels (coal, oil and gas)	to turn water into steam to turn			Provides most of the UK energy. Large reserves. Cheap to extract. Used in transport, heating and making electricity. Easy to transport.		Non-renewable. Burning coal and oil releases sulfur dioxide. When mixed with rain makes acid rain. Acid rain damages building and kills plants. Burning fossil fuels releases carbon dioxide which contributes to global warming. Serious environmental damage if oil spilt.		ng and kills Intributes to				
Nuclear	Nucle	ar fission proces	ss.	Generating ele	ctricit	No greenhouse gases produced. Lots of energy produced from small amounts of fuel.		Non-renewable. Dangers of radioactive materials being released into air or water. Nuclear sites need high levels of security. Start up costs and decommission costs very expensive. Toxic waste needs careful storing.		costs and		
Biofuel			Transport generating ele		Renewable. As plants grow, they remove carbon dioxide. They are 'carbon neutral'.		Large areas of land needed to grow fuel crops. Habitats destroyed and food not grown. Emits carbon dioxide when burnt thus adding to greenhouse gases and global warming.		l l			
Tides	Every day tides rise and fall, so generation of electricity can be predicted Generating electricity		ctricit	Renewable. Predictable due to consistency of tides. No greenhouse gases produced.		Expensive to set up. A dam like structure is built across an estuary, altering habitats and causing problems for ships and boats.		• •				
Waves	Up and down motion turns turbines Generating elect		ctricit	Renewable. No waste products.		Can be unreliable depends on wave output as large waves can stop the pistons working.		can stop the				
Hydroelectric	Falling water spins a turbine Genera		Generating ele	ctricit	ty Renewable. No waste products.		Habitats destroyed when dam is built.					
Wind	Movement causes turbine to spin which turns a generator Genera		Generating ele	ctricit	y Renewable. No waste products.		Unreliable – wind varies. Visual and noise pollution. Dangerous to migrating birds.			gerous to		
	Directly heats objects in solar panels Generat		Generating ele	ctricit	v			Making and installing so	olar panels expen	sive. Unreliable d	ue to light	

better hope – brighter future

Renewable. No waste products.

Renewable. Clean. No greenhouse

gases produced.

Making and installing solar panels expensive. Unreliable due to light

intensity.

Limited to a small number of countries. Geothermal power stations can

cause earthquake tremors.

Generating electricity

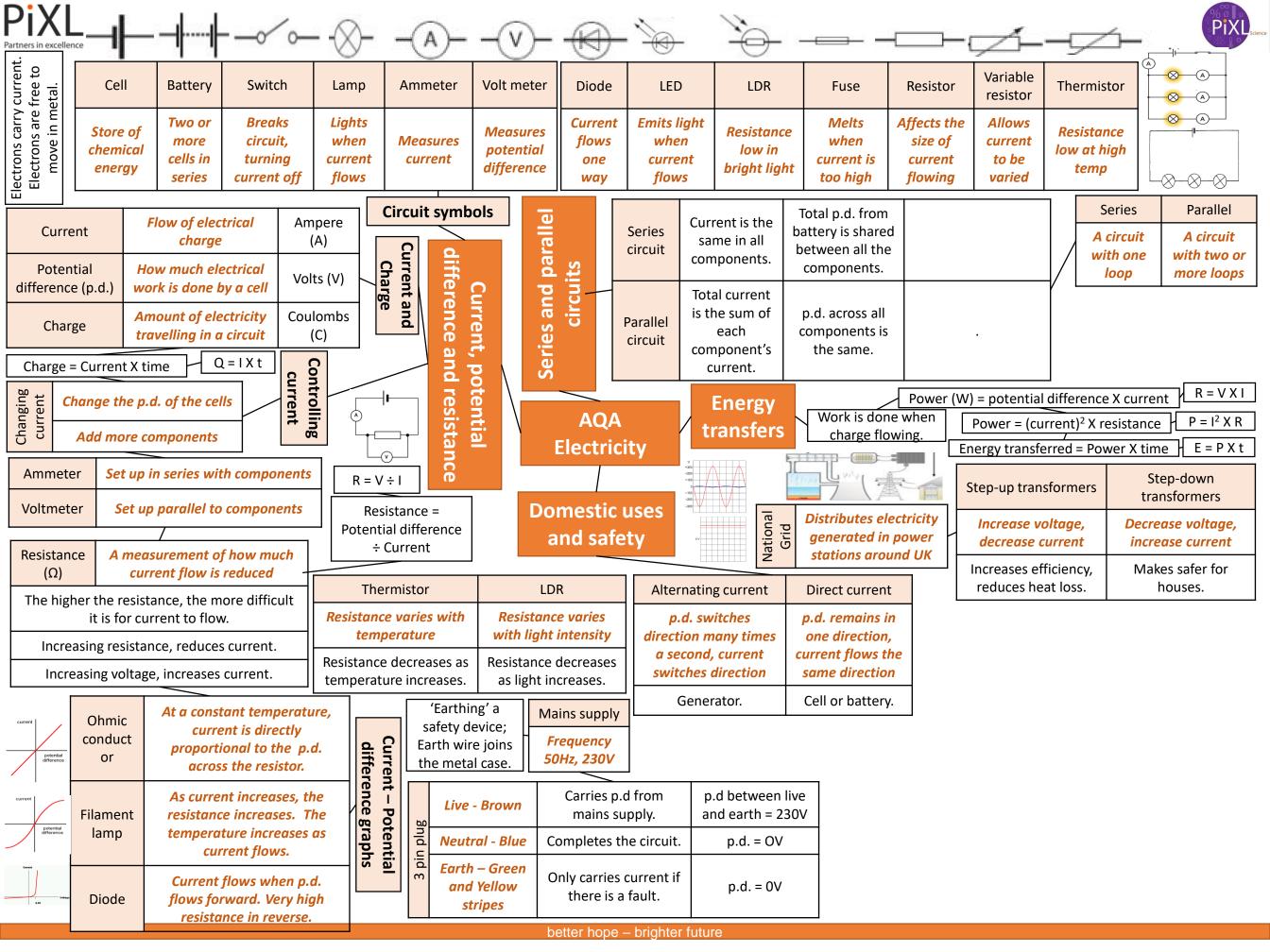
and some heating

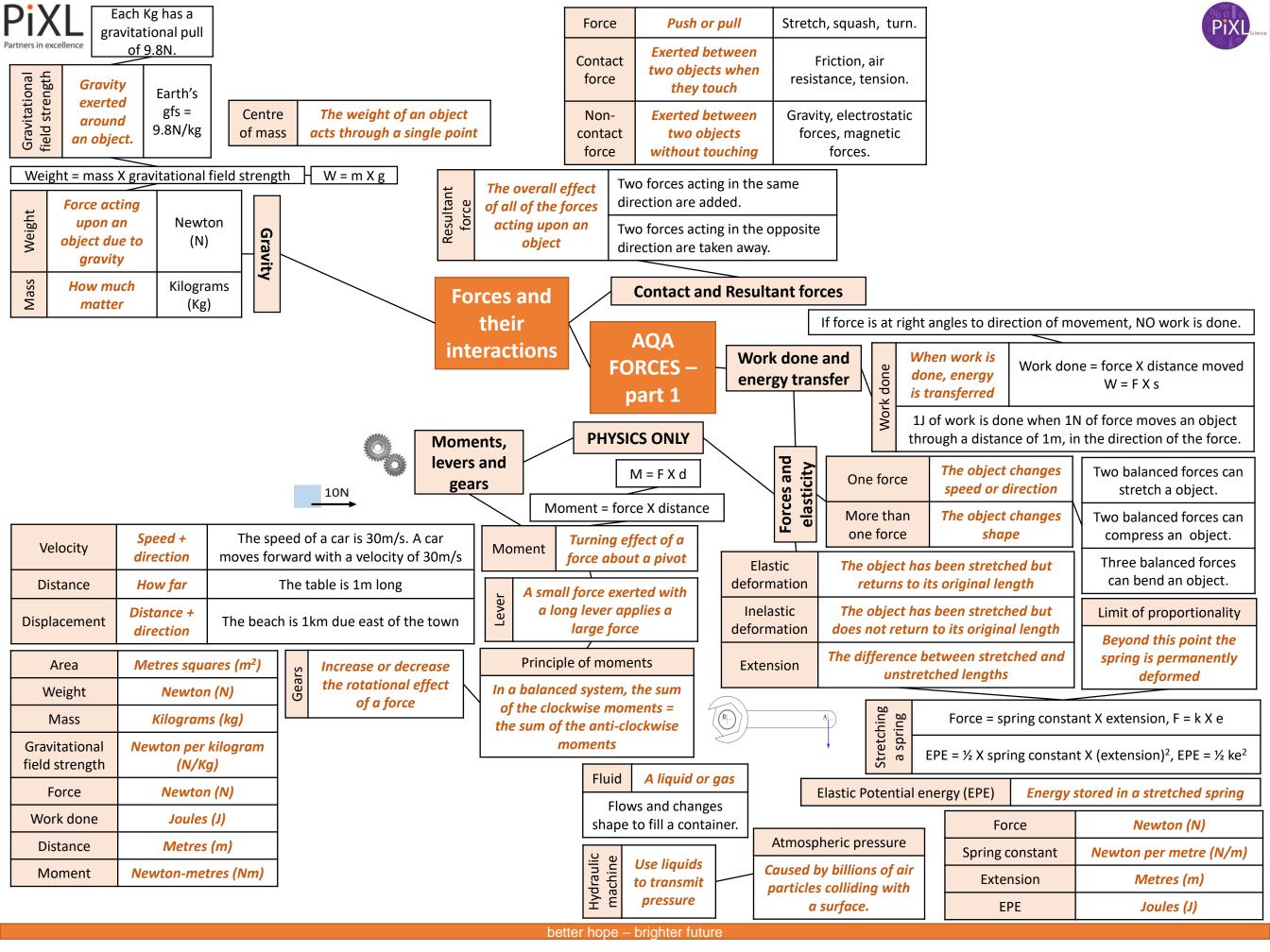
Generating electricity

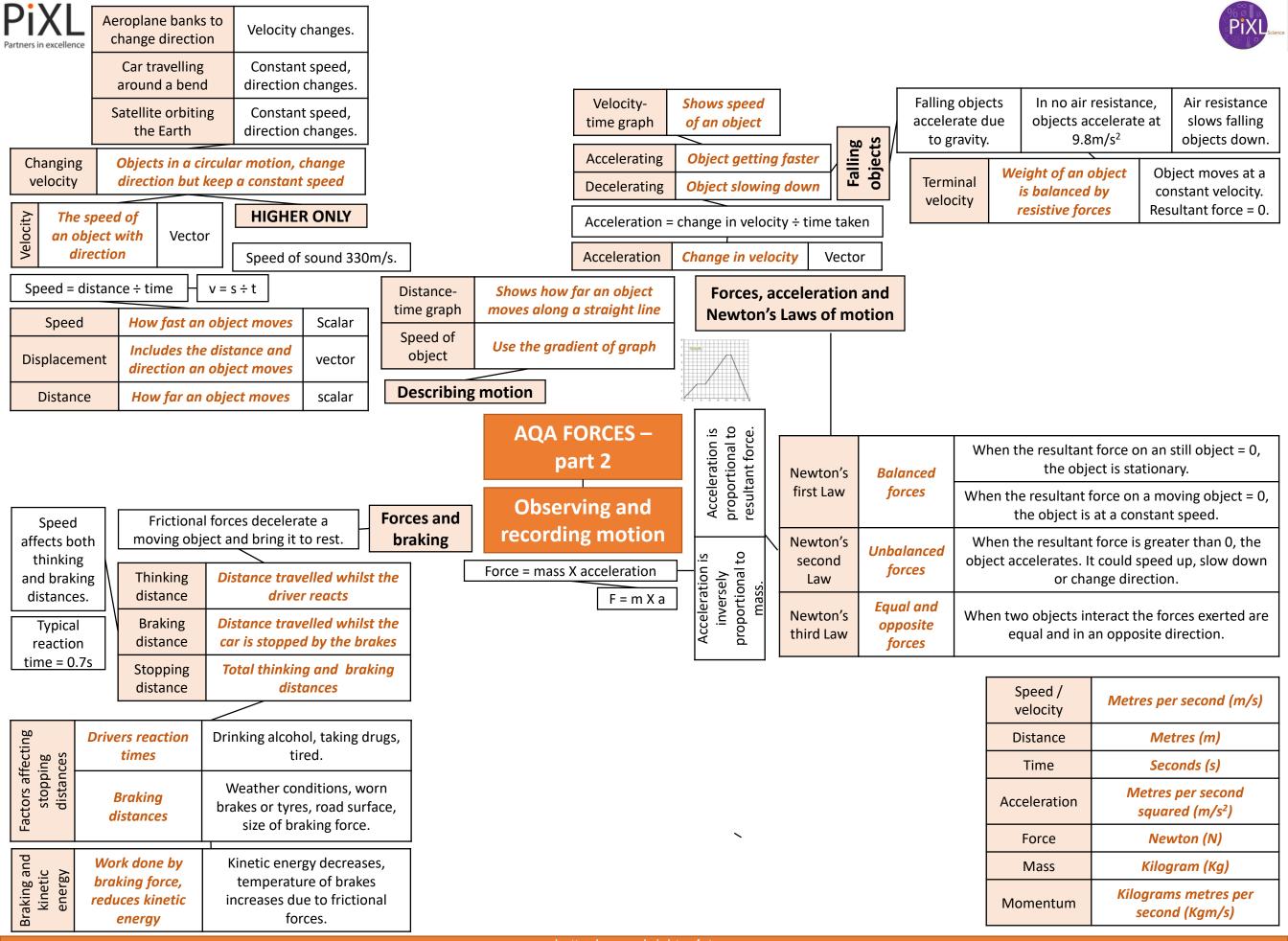
and heating

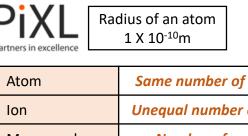
or sunlight captured in photovoltaic

cells


Hot rocks under the ground heats


water to produce steam to turn


turbine


Solar

Geothermal

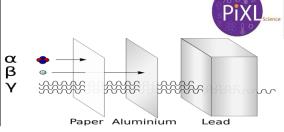
artners in excellence	1 X 10 ⁻¹⁰ m		Negative i	on
Atom	Same number	of protons an	d electrons	//
Ion	Unequal numb	er of electron	s to protons	
Mass number	Number of	protons <u>and</u> r	neutrons	_
Atomic number	Num	ber of proton)S	

Particle	Charge	Size	Found
Neutron	None	1	In the nucleus
Proton	+	1	In the nucleus
Electron	-	Tiny	Orbits the nucleus

Isotope	⁶ ₃ Li	7 3
Different	former of an	 :46.4

Different forms of an element with the same number of protons but different number of neutrons

Discovery of the nucleus


Democritus	Suggested idea of atoms as small spheres that cannot be cut.
J J Thomson (1897)	Discovered electrons—emitted from surface of hot metal. Showed electrons are negatively charged and that they are much less massive than atoms.
Thomson (1904)	Proposed 'plum pudding' model – atoms are a ball of positive charge with negative electrons embedded in it.
Geiger and Marsden (1909)	Directed beam of alpha particles (He ²⁺)at a thin sheet of gold foil. Found some travelled through, some were deflected, some bounced back.
Rutherford (1911)	Used above evidence to suggest alpha particles deflected due to electrostatic interaction between the very small charged nucleus, nucleus was massive. Proposed mass and positive charge contained in nucleus while electrons found outside the nucleus which cancel the positive charge exactly.
Bohr (1913)	Suggested modern model of atom – electrons in circular orbits around nucleus, electrons can change orbits by emitting or absorbing electromagnetic radiation. His research led to the idea of some particles within the nucleus having positive charge; these were named protons.
Chadwick (1932)	Discovered neutrons in nucleus – enabling other scientists to account for mass of atom.

Electrons lost
Positive ion

Electrons gained

Atom structure

Decay	Range in air	lonising power	Penetration power
Alpha	Few cm	Very strong	Stopped by paper
Beta	Few m	Medium	Stopped by Aluminium
Gamma Great distances		Weak	Stopped by thick lead

 $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$

 $^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$

 $^{99}_{43}Tc \rightarrow ^{99}_{43}Tc + \gamma$

Radioactive decay	Unstable atoms randomly emit radiation to become stable
Detecting	Use Geiger Muller tube
Unit	Becquerel
Ionisation	All radiation ionises

Atoms and Isotopes

Nuclear fission and fusion

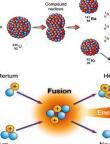
AQA

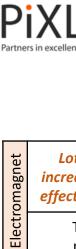
ATOMIC

STRUCTURE

Atoms and Nuclear Radiation

Decay	Emitted from nucleus	number a	in mass nd atomic nber
Alpha (α)	Helium nuclei $\binom{4}{2}He$)	-4	-2
Beta (β)	Electron $\binom{0}{-1}e$	0	+1
Gamma (γ)	Electromagnetic wave	0	0
Neutron	Neutron	-1	0


Contamination **Unwanted presence of radioactive atoms** Irradiation Person is in exposed to radioactive source


life of its initial radioactivity		The time taken to lose half
	life	of its initial radioactivity

Uses	Different isotopes have different half lives	Short half-lives used in high doses, long half lives used in low doses.
Tracers	Used within body	Isotope with short half life injected, allowed to circulate and collect in damaged areas. PET scanner used to detect emitting radiation. Must be beta or gamma as alpha does not penetrate the body.
Radiation therapy	Used to treat illnesses e.g. cancer	Cancer cells killed by gamma rays. High dose used to kill cells. Damage to healthy cells prevented by focussed gamma ray gun.

Fuel rods	Made of U-238, 'enriched' with U-235 (3%). Long and thin to allow neutrons to escape, hitting nuclei.
Control rods	Made of Boron. Controls the rate of reaction. Boron absorbs excess neutrons.
Concrete	Neutrons hazardous to humans – thick concreate shield protects workers.

Nuclear fission		One large unstable nucleus splits to make	Neutron hits U-235 nucleus, nucleus absorbs neutron, splits emitting two or	Process repeats, chain reaction formed	• + •n
	Nu fis	two smaller nuclei	three neutrons and two smaller nuclei. Process also releases energy.	Used in nuclear power stations	Deute
	Nuclear fusion	Two small nuclei join to make one larger nucleus	Difficult to do on Earth – huge amounts of pressure and temperature needed.	Occurs in stars	Tritium

A device using a small current to control a larger current in another circuit

Solenoid is wound around an iron core. Small current magnetises the solenoid. This attracts to electrical contacts, making a complete circuit. Current flows from battery to starter motor.

Lots of turns of wire increase the magnetising effect when current flows

> Turn current off, magnetism lost.

Use larger current Increase strength Use more turns of wire Put turns of wire closer together

Solenoid

Magnetic field A long coil of from each loop wire adds to the next.

Reverse current, magnetic field direction reverses.

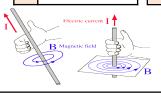
Further away from the wire, magnetic field is weaker.

Current large enough, iron filings show circular magnetic field.

If current is small, magnetic field is very weak.

Magnets

Use iron core in middle


Magnetic field

around

മ

wire

Right Thumb Direction of current. Direction of magnetic field.

Electric current flowing in a wire produces a magnetic field around it.

Permanent and Induced Magnetism

placed in a magnetic field.

Split ring commutator Split-ring touching two carbon brush

contacts

speakers **Converts** variations in electrical Fond current into sound waves. Varying current flows through a coil that is in a magnetic field. A force on the wire moves backwards and forwards as current varies. Coil connected to a diaphragm. Diaphragm movements produce sound waves.

Coil of wire rotating inside a magnetic field. The end of the coil is connected to slip rings.

Produces altering current.

Current flows through the wire

causing a downward movement

on one side and an upward

movement on the other side.

Microphones

Converts pressure variations in sound waves into variations in current in electrical circuits.

Fleming's lefthand rule

To predict the direction a straight conductor moves in a magnetic field.

Direction of Thumb movement. First Direction of finger magnetic field. Direction of Second finger current.

If current and

magnetic field are parallel to each other, no force on wire.

Magnetic flux	Lines drawn to show magnetic field	Lots of lines = stronger magnets.
Magnetic flux density	Number of lines of magnetic flux in a given area	Measures the strength of magnetic force.

Generator effect

Generates electricity by inducing current or p.d.

Uses of the Dynamo, generator effect **Microphones**

Force	Newton (N)
Magnetic flux density	Tesla (T)
Current	Amperes (A)
Length	Metres (m)
Power	Watts (W)
p.d.	Voltage (V)

Motor effect

Generators

Electric motor

AQA MAGNETISM AND ELECTROMAGNETISM

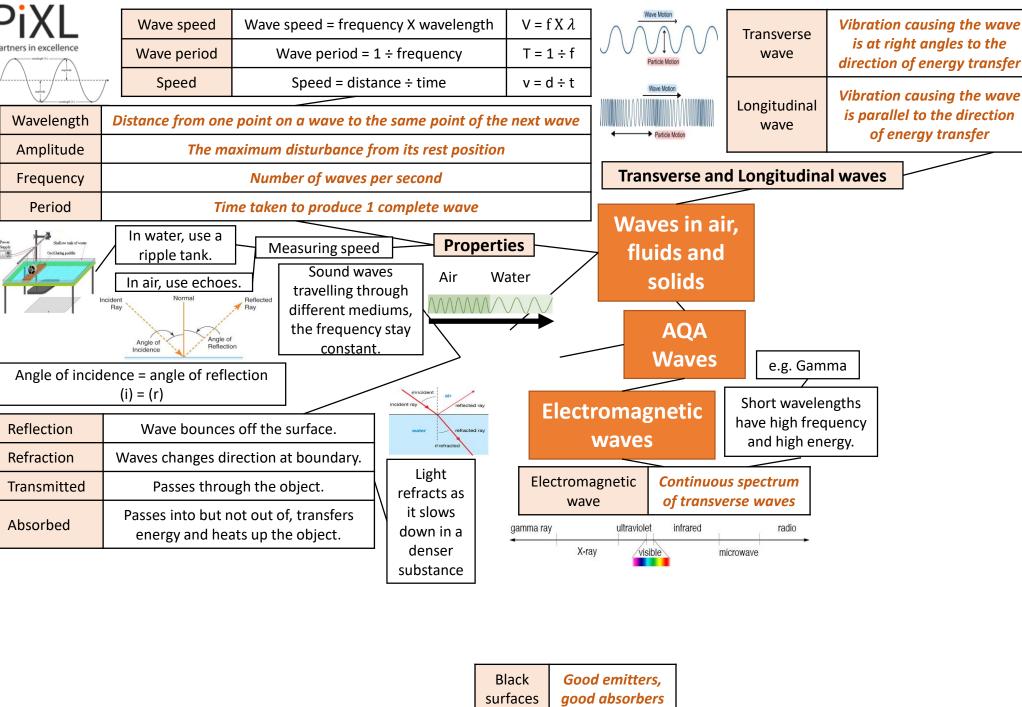
Coil of wire

rotates

about an

axle

Induced potential, transformers and **National Grid**


National Grid

Distributes electricity generated in power stations around UK

Magnetic	Materials attracted by magnets	Uses non-contact force to attract magnetic materials.
North seeking pole	End of magnet pointing north	Compass needle is a bar magnet and points north.
South seeking pole	End of magnet pointing south	Like poles (N – N) repel, unlike poles (N – S) attract.
Magnetic field	Region of force around magnet	Strong field, force big. Weak field, force small. Field is strongest at the poles.
Permanent	A magnet that produces its own magnetic field	Will repel or attract other magnets and magnetic materials.
Induced	A temporary	Becomes magnet when

magnet

Step-up transformers	Step-down transformers
Increase voltage, decrease current	Decrease voltage, increase current
Increases efficiency by reducing amount of	Makes safer value of voltage for houses and
heat lost from wires.	factories.

	Units
Distance	Metres (m)
Wave speed	Metres per second (m/s)
Wavelength	Metres (m)
Frequency	Hertz (Hz)
Period	Seconds (s)

Specular

Energy is carried

outwards by the

Energy is carried

along the wave.

wave.

Water and

light waves,

S waves.

Sound

waves.

waves, P

Black surfaces	Good emitters, good absorbers
White surfaces	Poor emitters, poor absorbers
Shiny surfaces	Good reflectors

EM waves refract

	Ultra	Partially reflected off boundary	Used for medical and foetal scans.		
/	Sonar	Reflected off objects	Used to determine depth of objects under the sea.		

	_			۵					
	EM wave	Danger	Use						
	Radio	Safe.	Communications, TV, radio.						
	Microwave	Burning if	Mobile phones, cooking, satellites.						
	Infrared	concentrated.	Heating, remote controls, cooking.						
	Visible	Damage to eyes. Illumination, photography, fibre optics. Sunburn, cancer. Security marking, disinfecting water.							
	Ultra violet								
	X-ray	Cell destruction,	Broken bones, airport security.						
	Gamma	Gamma mutation, cancer.	Sterilising, detecting and killing cancer.						
_	abtor futuro								

Diffuse	Rough surface reflection.							
	Low frequency, long wavelength.							
╽└ᆣ	l long wavelength.							
1	•	White	Wave	lengths	reflected			
	7	Black	Wave	lengths	absorbed			
┨┌	High frequency,							
11	1							
_ <u> </u>	short wavelength							

Flat surface reflection.